Determining effective factors controlling chemical parameters of Gamasyab and Ghareh-Sou Rivers (Case study: Kermanshah Province)

Authors

1 Assistant Professor at Department of Watershed, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Iran

2 M.Sc of Watershed Management, Department of Agriculture and Natural Resources,University of Gonbad Kavoos, Iran.

Abstract

In this study, to investigate the water quality of Gamasyab and Ghareh-Sou rivers in Kermanshah province, data from a 5-year statistical period during 2014-2018 was used. To evaluate the water hydrochemical properties, the water type and hydrogeochemical facies of rivers water were first determined using Stiff and Piper diagrams. Next, the controlling factors of the water chemistry of two rivers were determined using Gibbs diagram and Ionic ratios. Also, factor analysis and cluster analysis were used to determine the processes affecting the hydrochemistry of river water. Finally, to predict the possibility of dissolution and precipitation of some minerals, their saturation indices were estimated. The results showed that water type and facies are bicarbonate calcite in both rivers. Also, the main factor in changing the chemical quality of water in both Gamasyab and Ghareh-Sou rivers is water-rock reaction. According to the results of factor and cluster analysis, this factor can be attributed to the dissolution of (1) carbonate and evaporation (2) dolomite formations in the rivers watershed. However, the dissolution of carbonate formations due to their abundances and distributions two watersheds has a more significant effect on the change in water chemistry.This resulted an increase in some chemical parameters such as calcium, magnesium and bicarbonate in the water of these two rivers and also caused positive water saturation index for aragonite, calcite and dolomite minerals. Considering the low contribution of the second factor in changing the chemical parameters, the saturation indices for evaporative minerals of gypsum, halite and anhydrite is negative.

Keywords


خسروی، ح.، مردای، ا. و ح. دارابی. 1394. شناسایی مناطق همگن از نظر کیفیت آب زیرزمینی با استفاده از تحلیل عاملی و خوشه ای، مطالعه موردی دشت قیر استان فارس. فصلنامه علمی پژوهشی مهندسی آبیاری و آب ایران. دوره6، شماره 21، ص 133-119.
میرزایی، ر.ا.، عباسی، ن. و م. ساکی‌زاده. 1396. بررسی کیفیت آب رودخانه‌های جاری در استان بوشهر با استفاده از شاخص کیفیت آب طی سال‌های 92-1390. مجله علمی-پژوهشی طب جنوب. دوره 20، شماره 5، ص480-470.
نظریان، س. و ب. فریدگیگلو. 1394. بررسی کیفیت شیمیایی آب و روند تغییرات پارامترهای کیفی در محل ایستگاه نوده رودخانه گرگان‌رود استان گلستان. فصلنامه علمی پژوهشی مهندسی آبیاری و آب ایران. سال پنجم، شماره 19، ص 93-80.
نیسی، ل. و پ. تیشه‌زن. 1397. ارزیابی کیفیت آب رودخانه دز با استفاده از روش‌های آماری چندمتغیره. فصلنامه علمی پژوهشی مهندسی آبیاری و آب ایران . سال نهم، شماره 33، ص 150-139.
Abyaneh, H. Z. 2014. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Journal of Environmental Health Science and Engineering, 12(1): 40.
Azhar, S.C.A.Z., Aris, M.K., Yusoff, M.F., Ramli, H. Juahir. 2015. Classification of river water quality using multivariate analysis. Procedia Environl Sci, 30:79-84.
Boyd, CE. 2015. Water quality: an introduction. Springer International Publishing, Switzerland.
Gibbs, R.J. 1970. Mechanism controlling world water chemistry. Science, 170: 1088-1090.
Howard, K.W., E. Mullings. 1996. Hydrochemical analysis of groundwater flow and saline intrusion in the Clarendon basin, Jamaica. Groundwater, 34: 801-810.
Islam, M.A., Zahid, A., Rahman, M.M., Rahman, M.S., Islam, M.J., Akter, Y., Shammi, M., Bodrud-Doza, M., B.  Roy. 2017. Investigation of groundwater quality and its suitability for drinking and agricultural use in the south central part of the coastal region in Bangladesh. Exposure and Health, 9(1): 27-41.
Laxmankumar, D., Satyanarayana, E., Dhakate, R., P.R. Saxena. 2019. Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundwater for Sustainable Development, 8: 474-483.
Liu, C.W., Lin, K.H., Y.M. Kuo. 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of Total Environment, 313: 77-89.
Mishra, K., Binaya, K. Ram. 2017. Regmi, Yoshifumi Masago, Kensuke Fukushi, Pankaj Kumar, and Chitresh Saraswat. Assessment of Bagmati River Pollution in Kathmandu Valley: Scenario-Based Modeling and Analysis for Sustainable Urban Development. Sustainability of Water Quality and Ecology, 9: 67-77.
Oinam, J. D., Ramanathan, A.L, S.G. Jayalakshmi. 2012. Geochemical and statistical evaluation of
groundwater in Imphaland Thoubal district of Manipur, India. J. Asian Earth Sci, 48: 136-149.
Qishlaqi, A., S., Kordian, A. Parsaie. 2017. Hydrochemical evaluation of river water quality-a case study. Applied Water Science, 7(5): 2337-2342.
Sharma, P., P.k., Meher, A., Kumar, Y.P., Gautam, K.P. Mishra.  2014. Changes in water quality index of Ganges river at different locations in Allahabad. Sustainability Water Quality Ecology, 3:67-76.
Sikdar, P.K., Sarkar, S.S., S. Palchoudhury. 2001. Geochemical evolution of grounwater in the Quaternary aquifer of Calcutta and Howrah, India. Journal of Asian Earth Scince, 19:579-594.
 
World Health Organization. 2017. Guidelines for drinking-water quality: first addendum to the fourth edition.
Zhao, G., Li, W., Li, F., Zhang, F., G. Liu. 2018. Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibet Plateau. Science of the Total Environment, 610: 641-650.