ارزیابی کارایی مدل‌های نظری آبشویی املاح خاک در دشت آزادگان

نویسندگان

1 سازمان جنگل‌ها، مراتع و آبخیزداری کشور، اداره کل منابع طبیعی و آبخیزداری خوزستان، اداره مهندسی و مطالعات، اهواز، خوزستان، ایران

2 استاد گروه آبیاری و زهکشی دانشگاه تربیت مدرس

3 استادیار، گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

4 استادیار پژوهش، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج

چکیده

شوری منابع آب و خاک یکی از مهم‌ترین عوامل در کاهش عملکرد گیاهان در مناطق خشک و نیمه‌خشک است که رشد و توسعه گیاهان را محدود می­نماید. یکی از راهکارها برای غلبه بر مشکل شوری خاک، آبشویی آن است. ارزیابی مقدار آب مورد نیاز در این فرآیند، صرفه‌جویی در مصرف آب و استفاده بهینه از منابع آبی به‌منظور مدیریت صحیح آب از پراهمیت­ترین موارد در اجرای آبشویی است. هدف از این پژوهش، بررسی مدل‌های نظری برای شبیه‌سازی شوری نهایی و مقایسه آن با مقادیر واقعی بود. بدین منظور آزمایش­های اصلاح خاک­های شور و سدیمی در منطقه جفیر در دشت خوزستان به­روش مزرعه­ای از طریق استوانه­های مضاعف انجام پذیرفت. در تمام آزمایش­ها، آبشویی به روش غرقاب متناوب تا عمق 150 سانتی‌متر خاک با کاربرد 100 سانتی‌متر آب آبشویی و تناوب 25 سانتی‌متری صورت پذیرفت. چهار مدل نظری آبشویی شامل سری مخازن (SRM)، مدل حل عددی (NM)، مدل ستون پیوسته (TPTM) و مدل مخزن با مجرای فرعی (SRBM) به‌منظور پیش­بینی شوری نهایی خاک و مقایسه آن با مقادیر واقعی انتخاب شدند. نتایج نشان داد دو مدل سری مخازن و مخزن منفرد کارایی بیشتری داشته­اند. در نهایت، هرچند که به ازای عمق‌های مختلف آب آبشویی، عملکرد مدل‌های مورد بررسی متفاوت بوده، لیکن با توجه به پایین‌تر­ بودن آماره‌های RMSE و RMSEn در مدل­ سری مخازن نسبت به سایر مدل­ها، این مدل برای پیش‌بینی نتایج حاصل از آبشویی و اصلاح خاک منطقه مورد مطالعه مناسب­تر بوده و شوری نهایی را با دقت بیشتری برآورد می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating efficiency of theoretical saline soils leaching models in Azadegan plain

نویسندگان [English]

  • Maryam Mohammazadeh 1
  • Mehdi Homaee 2
  • Safoora Asadi Kapourchal 3
  • Mahnaz Eskandari 4
1 Forest, Range and Watershed Managment Organization, khuzestan Department of Natural Resources and Watershed Managment, ahwaz, khuzestan, iran
2 Professor, Department of Irrigation and Drainage, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
3 Assistant Professor, Department of Soil Science, Faculty of Agricultural Sciences, University Of Guilan, Rasht, Iran
4 Research Assistant. Prof., Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Soil and water salinity is one of the most important factors in reducing the yield of plants in arid and semi-arid regions, which tends to limit plant growth and its development. In saline soils, yield production directly influences by soluble salts in the root zone as well as by shallow water table depth. The first step for reclamation of such soils is reducing salinity to optimum level by leaching practice. Assessing the quantity of water required for this practice, as well as saving the applied water and proper use of water resources for optimal water management are of great importance for leaching process. The objectives of this study were to investigate theoretical models to predict ultimate salinity and to compare the predicted outcomes with experimentally obtained data. For this purpose, several field saline-sodic soil reclamation experiments were carried out in Jafir area, Khuzestan plain, Iran, by using double rings. All experiments were conducted by applying 100 cm water depth in four-25 cm intervals and intermittent ponding method. Four theoretical leaching models including series of reservoirs (SRM), numerical solution (NM), continuous column (TPTM) and secondary reservoir (SRBM) models were used to predict the ultimate salinity. All models outputs were then verified with the real data. Results indicated that among four examined models, the SRM and SRBM models provide more reliable outputs. Although the performance of studied models differed for different depths of applied leaching water, but considering the lower RMSE and RMSEn values of SRM model, this model is more suitable for forecasting the results of leaching and soil reclamation in the study area. This model could reasonably well estimate the designated final salinity.

کلیدواژه‌ها [English]

  • Saline soil
  • sodic soil
  • Leaching
  • Modeling
اسدی کپورچال، ص.، م. همایی و ا. پذیرا. 1391. مدلسازی آب آبشویی مورد نیاز برای بهسازی خاکهای شور.  نشریه حفاظت منابع آب و خاک، سال دوم، شماره 3، ص 83-65.
پذیرا، ا. 1385 . شوری زدایی تدریجی خاک بوسیله فوذ عمقی آب آبیاری. چهارمین کارگاه فنی زهکشی، ص 38-21.
پروانک بروجنی، ک. 1380، ارزیابی کاربرد مدل های نظری آبشویی در اصلاح و بهسازی بخشی از خاک های شور و سدیمی استانهای خوزستان و اصفهان، پایان نامه کارشناسی ارشد، کتابخانه دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران.
محمدزاده، م.، م. همایی و ا. پذیرا. 1392. مدلی کاربردی برای بهسازی خاکهای شور و سدیمی. نشریه حفاظت آب و خاک، سال سوم، شماره 1، ص 59-43.
مشعل، م.، م. دانشور، س. امامی و م. وراوی‌پور. 1392. ارزیابی مدل‌های نظری آبشویی املاح خاک (مطالعة موردی: اراضی لابار- دشت ساوه). نشریه مدیریت آب و آبیاری، سال سوم، شماره 1، ص 134-121.
وزیری، ژ. 1374. ارزیابی مدل‌های شوری‌زدایی خاک با آزمون مزرعه‌ای، دانشگاه صنعتی اصفهان. پایان‌نامة کارشناسی ارشد.
Asadi Kapourchal, S., M. Homaee and E. Pazira. 2011. Desalinization model for large scale application. International Journal of Agricultural Science and Research, (IJASR), 1(2): 25-32.
Asadi Kapourchal, S., M. Homaee and E. Pazira. 2013.A Parametric Desalinization Model for Large Saline Soil Reclamation. Journal ofBasic and Applied Scientific research, 3(3): 774-783.
Asadi Kapourchal, S., S. Asadi Kapourchal, E. Pazira and M. Homaee. 2009. Assessingradish potential for phytoremediation of lead- polluted soils resulting from airpollution. Plant, Soil and Environment, 55: 202–206.
Burns, I.G. 1974. Amodel for predicting the redistribution of salt applied to fallow soils after exess rain fall or evaporation. European Journal of Soil Science, 25: 165-178.
Dieleman, P.J. 1963. Reclamation of salt affected soils in Iraq. Veenman, wageningen, 175 P.
Eloubaidy, A.F., S.M. Hussain and M.T. Al-Taie. 1993. Field evaluation of desalinization models. Agricultural Water Management, 24 (1): 1-13.
Esmaili, E., S. Asadi Kapourchal, M. J. Malakouti and M. Homaee. 2008. Interactive Effect of Salinity and Two Nitrogen Fertilizers on Growth and Composition of Sorghum. Plant Soil and Environment, 56(12): 537-546.
Glueckauf, D. 1949. Activity coefficientds in concentrated solution containing several electrolytes. Nature, 163: 414-415.
Homaee, M., C. Dirksen, and R. Feddes. 2002. Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management, 57(2): 89-109
Hoffman, G.J. 1980. Guidelines for reclamation of salt-affected soils. In: Proceedings of International American Salinity and Water Management, Technical Conference, Juar, Mecxico, PP: 49-64.
Jalali, V.R., S. Asadi Kapourchal and M. Homaee. 2017. Evaluating performance of macroscopic water uptake models atproductive growth stages of durum wheat under saline conditions. Agricultural Water Management, 180: 13-21
Mahler, P.J. 1979. Manual of land classification for irrigation, No. 205, Soil Institute of Iran, Rev.3.
Reeve, R.C. 1957. The relation of salinity to irrigation and drainage requirements. Third Congress of International Commission on and Drainage, Transactions, 5: 10.175- 10.187.
Rhoades, J.D. 1974. Drainage for salinity control. In: van Schilfgaarde, J. (Ed.), Drainage for Agriculture. Agronomy Monograph No. 17. SSSA, Madison, WI, pp. 433–461.
Van Der Molen, W.H. 1979. Salt balance and leaching requirement. Drainage principles and application. Vol. II. ILRI. Wageningen. The Netherlands
Verma, SK., and R.K. Gupta. 1989. Leaching of saline clay soil under two modes of water application. Journal Ind Society Soil Science, 37: 803-809
Yitayew M. and C. Reynolds. 1977. The cost saving: The Low-Head gravity-flow bubbler Irrigation system advantages, American Society of Agricultural Engineers, No. 972184.