بررسی اثرات متغیرهای اقلیمی در تخمین جریان رودخانه با استفاده از روش‌های منفرد و هیبریدی-موجکی محاسبات نرم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 پژوهشگر پسا دکتری، گروه مهندسی آبیاری و آبادانی پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران

3 گروه علوم و مهندسی آب، داشگاه کردستان

4 گروه مهندسی آب، انشگاه ارومیه

10.22125/iwe.2020.114961

چکیده

تغییرات اقلیمی و تاثیر آن در وضعیت منابع آبی می‌تواند از جنبه‌های مختلف زندگی و حیات بشر در روی زمین را به مخاطره بیاندازد. در این مطالعه، با استفاده از روش­های منفرد و هیبریدی-موجکی شبکه عصبی مصنوعی، سامانه استنتاجی فازی عصبی (دسته­بندی تفریقی) و برنامه­ریزی بیان ژن به مدل­سازی پارامتر جریان پرداخته شده است. بدین منظور از داده­های اقلیمی ماهانه با طول دوره آماری 21 ساله (1395-1375) جریان، دما و بارش ایستگاه تپیک واقع در رودخانه نازلوچای ارومیه استان آذربایجان­غربی استفاده شده است. در این مطالعه تاثیر پارامترهای جریان تاخیری، بارش، دما و اثر فصلی (ضریب ماهانه) در مدل­ها بررسی شده است. نتایج حاکی از عملکرد برتر مدل­های هیبریدی-موجکی نسبت به مدل­های منفرد محاسبات نرم و تاثیر مثبت اعمال اثر فصلی در مدل­سازی جریان رودخانه­ای می­باشد. همچنین تبدیل موجک با آنالیز داده­ها و تفکیک نویزها توانایی ارتقاء بخشیدن به عملکرد مدل­های هیبریدی نسبت به مدل­های منفرد را امکان­پذیر می­نماید. در مدل بهینه هیبریدی موجکی برنامه­ریزی بیان ژن، مقادیر شاخص­های ارزیابی ضریب همبستگی و ریشه میانگین مربعات خطا به ترتیب برابر 978/0 (حداکثر) و 326/2 (m3/s) (حداقل) به دست آمده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effects of climate variables on river flow estimation using single and hybrid-wavelet methods of soft computing

نویسندگان [English]

  • Reza Sobhani 1
  • Sarvin Zamanzad-Ghavidel 2
  • Hadi Sanikhani 3
  • Majid Montaseri 4
1 Urmia university
2 Postdoctoral Researcher, Department of Irrigation & Reclamation Engineering, Faculty of Agriculture Engineering & Technology, University of Tehran, Karaj
3 Water Sciences and Eng. Dep., University of Kurdistan
4 Water Eng. Dep., Urmia University
چکیده [English]

Climate change and its impact on the status of water resources can endanger the various aspects of life and human life on Earth. In this study, single and hybrid-wavelet artificial neural network, Adaptive neuro-fuzzy inference system and gene expression programming were used modeling flow parameter. For this purpose, monthly climatic data with 21-year (1996-2016) statistical period of flow, temperature and precipitation of Tapik station in the Nazluchay River of West Azerbaijan province has been used. In this study, the effects of delayed flow parameters, precipitation, temperature and periodic effect (monthly coefficient) in models have been investigated. The results show the superior performance of wavelet hybrid models compared to single models of soft computing and the positive effect of applying periodic effects on river flow modeling. Also, wavelet transformation by analyzing data and separating the noise enables the ability to upgrade the performance of hybrid models as compared to single models. For the optimal model (i.e. hybrid wavelet-gene expression programing model, the values of correlation coefficient and root mean square error indices were obtained as 0.98 (maximum) and 326.2 (m3/s) (minimum), respectively.

کلیدواژه‌ها [English]

  • Gene expression programming
  • Neuro-Fuzzy
  • Artificial Neural Network
  • River Flow
  • Nazluchay
محمدرضاپور، ا. 1396. پیش­بینی تبخیر-تعرق پتانسیل ماهانه با استفاده از مدل­های ماشین بردار پشتیبان، برنامه­ریزی ژنتیک و سیستم استنتاج عصبی- فازی. فصلنامه علمی پژوهشی مهندسی آبیاری و آب، سال هفتم، شماره 27، ص 150-135.
محمدی، ص. 1396. مقایسه مدل­های شبکه عصبی مصنوعی و منحنی سنجه رسوب در شبیه­سازی میزان رسوب معلق، مطالعه موردی حوزه آبخیز شاهرود. فصلنامه علمی پژوهشی مهندسی آبیاری و آب، سال هفتم، شماره 27، ص 46-32.
Alvisi, S., G. Mascellani, M. Franchini and A. Bardossy. 2005. Water level forecasting through fuzzy logic and artificial neural network approaches. Journal of Hydrology and Earth System Sciences, 2: 1107-1145.
Barzegar, R., J. Adamowski and A. Asghari Moghaddam. 2016. Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. Stochastic Environmental Research and Risk Assessment, DOI 10.1007/s00477-016-1213-y.
Güldal, V and H. Tongal. 2010. Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Egirdir Lake level forecasting. Water Resources Management, 24 (1): 105–128.
Hashmi, M.Z., A.Y. Shamseldin and B.W. Melville. 2011. Statistical downscaling of watershed precipitation using Gene Expression Programming (GEP). Environmental Modelling & Software, 26:1639-1646.
Jang, J.S.R. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23 (3): 665–685.
Kisi, O., J. Shiri and M. Tombul. 2013. Modelling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51: 108–117.
Kisi, O and M. Cimen. 2012. Precipitation forecasting by using wavelet support vector machine conjunction model. Engineering Application of Artificial Intelligence, 25:783–792.
Montaseri, M., S. Zamanzad Ghavidel and H. Sanikhani. 2018. Water quality variations in different climates of Iran: Toward modelling total dissolved solid using soft computing techniques. Stochastic Environmental Research and Risk Assessment, DOI: 10.1007/s00477-018-1554-9.
Sanikhani, H and O. Kisi. 2012. River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resources Management, 26:1715-1729.
Sanikhani, H., O. Kisi, E. Maroufpoor and Z.M. Yaseen. 2018. Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modelling scenarios. Theoretical and Applied Climatology, 1-14.
Shafaei, M and O. Kisi. 2015. Lake Level Forecasting Using Wavelet-SVR Wavelet-ANFIS and Wavelet-ARMA Conjunction Models. Water Resources Management, DOI: 10.1007/s11269-015-1147-z.
Traore, S and A. Guven. 2012. Regional-specific numerical models of evapotranspiration using gene-expression programming interface in Sahel. Water Resources Management, 26(15): 4367-4380.
Zhang, Z., Q. Zhang, V. P. Singh and P. Shi. 2018. River flow modelling: comparison of performance and evaluation of uncertainty using data-driven models and conceptual hydrological model. Stochastic environmental research and risk assessment, 1-16.