کاربرد مدل غیرخطی EGARCH در مدل‌سازی مقادیر تبخیر و تعرق پتانسیل

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب دانشگاه بیرجند

2 کیلومتر ۵ جاده کرمان - پردیس کشاورزی و منابع طبیعی دانشگاه بیرجند - دانشکده کشاورزی، گروه مهندسی آب صندوق پستی: 331

10.22125/iwe.2020.114966

چکیده

در مدل­های چند متغیره سری زمانی با دخالت دادن عوامل مؤثر دیگر، می­توان نتایج توصیف، مدل‌سازی و پیش­بینی پارامترهای مختلف را بهبود بخشید. هم­چنین از آنجا که مدل­های غیرخطی واریانس شرطی، بخش باقی­مانده مدل­های خطی را به شکل مناسبی مدل می­کنند، انتظار می­رود با تلفیق مدل­های خطی و غیرخطی، دقت مدل‌سازی و پیش­بینی­ها افزایش ­یابد. در این مطالعه از داده­های مقادیر تبخیر و تعرق پتانسیل ایستگاه­های شرق کشور (ایستگاه بیرجند، مشهد، زاهدان و زابل) در دوره آماری 2010-1973 در مقیاس ماهانه استفاده شده است. از آنجایی که مدل هدف چند متغیره می­باشد، علاوه بر داده­های تبخیر و تعرق پتانسیل، از داده­های رطوبت نسبی، سرعت باد و ساعات آفتابی نیز جهت مدل­سازی تبخیر و تعرق پتانسیل ماهانه استفاده شده است. مدل­های مورد بررسی در این تحقیق، دو مدل MPAR و MPAR-EGARCH می­باشد. نتایج بررسی و صحت سنجی داده­های مدل­شده نشان داد که هر دو مدل مورد بررسی از دقت بالایی برخوردار هستند. در این مطالعه در تمام موارد مدل چند متغیره تلفیقی با واریانس شرطی از دقت بیشتری نسبت به مدل چند متغیره پریودیک آرما برخوردار بودند. هم­چنین نتایج نشان داد که مدل تلفیقی MPAR-EGARCH نقاط کمینه و بیشینه داده­های مورد بررسی را به خوبی برازش داده است. متوسط میزان خطا در تخمین مقادیر تبخیر و تعرق پتانسیل توسط مدل MPAR در ایستگاه­های بیرجند، مشهد، زابل و زاهدان به ترتیب برابر با 4/0، 43/0، 05/1 و 04/3  و در مدل­های تلفیقی MPAR-EGARCH به ترتیب برابر با 16/0، 19/0، 55/0 و 59/0 می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of the non-linear EGARCH model in the modeling of the evapotranspiration values

نویسندگان [English]

  • yousef Ramezani 1
  • mohamad Nazeri Tahroudi 2
2 University of Birjand
چکیده [English]

In multivariate models, the modeling and predicting various parameters can improve by involving other factors. Also Since nonlinear models with conditional variance, the remaining portion of the linear models to adequately model, we expect that the combination of linear and nonlinear models, partly to increase the accuracy of modeling and predictions. In this study, were used the potential evapotranspiration values of stations in the provinces (Birjand, Mashhad, Zahedan and Zabol stations) during the statistical period of 1973-2010 at monthly scale. Since the goal model is multivariable, in addition to potential evapotranspiration data, relative humidity data, wind speed and sunshineare used to modeling the monthly evapotranspiration values. The models studied in this study are MPAR and MPAR-EGARCH models. The results of the verification and validation of the model data showed that both models are highly accurate. In this study, in all cases, the multivariate compilation model with conditional variance was more accurate than the multivariate periodic ARMA model. The results also showed that the MPAR-EGARCH compilation model fitted the minimum and maximum points of the studied data. The average error rate for estimating potential evapotranspiration values by MPAR model at stations of Birjand, Mashhad, Zabol and Zahedan was 0.4, 0.43, 1.05 and 3.04, respectively, and in the MPAR-EGARCH compilation models Respectively is equal to 0.16, 0.19, 0.55 and 0.59 respectively.

کلیدواژه‌ها [English]

  • Conditional Variance Models
  • Multivariate Models
  • PotentialEvapotranspiration
  • Seasonal Models
رمضانی، ی.، م، امیرآبادی­زاده.، م، یعقوب­زاده.، م، ناظری تهرودی. 1397. مدل‌سازی دبی جریان رودخانه با استفاده از مدل­های چندمتغیره تلفیقی سری زمانی. فصلنامه علمی پژوهشی مهندسی آبیاری و آب، 8(32): 63-48
ناظری تهرودی، م.، ک، خلیلی. 1397. مقایسه مدل­های ARMA و ARMA-PARCH در مدل­سازی دبی سالانه جریان (مطالعه موردی: رودخانه زرینه رود استان آذربایجان غربی). مجله پژوهش آب ایران، 12(3): 80-71.
Ahmadi F, Nazeri Tahroudi M, Mirabbasi R, Khalili K, Jhajharia D. 2018. Spatiotemporal trend and abrupt change analysis of temperature in Iran. Meteorological Applications, 25(2), 314-321.
Bloomfield P, Nychka D. 1992. Climate spectra and detecting climate change. Climatic Change, 21(3), 275-287.
Bollerslev T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.
Box GE, Cox DR. 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 211-252.
Caiado J. 2007. Forecasting water consumption in Spain using univariate time series models.
Doğan E, Işık S, Toluk T, Sandalcı M. 2007. Daily streamflow forecasting using artificial neural networks. In International Congress on River Basin Management (pp. 22-24).
Engle RF. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987-1007.
Fereydooni M, Rahnemaei M, Babazadeh H, Sedghi H, Elhami MR. 2012. Comparison of artificial neural networks and stochastic models in river discharge forecasting,(Case study: Ghara-Aghaj River, Fars Province, Iran). African Journal of Agricultural Research, 7(40), 5446-5458. 
Folland GB. 1990. Remainder estimates in Taylor's theorem. The American Mathematical Monthly, 97(3), 233-235.
Ghanbarpour MR, Abbaspour KC, Jalalvand GOUDARZ, Moghaddam GA. 2010. Stochastic modeling of surface stream flow at different time scales: Sangsoorakh karst basin, Iran. Journal of Cave and Karst Studies, 72(1), 1-10.
Hansen J, Lebedeff S. 1988. Global surface air temperatures: Update through 1987. Geophysical Research Letters, 15(4), 323-326.
Kendall MG. 1938. A new measure of rank correlation. Biometrika, 30(1/2), 81-93.
Komorník J, Komorníková M, Mesiar R, Szökeová D, Szolgay J. 2006. Comparison of forecasting performance of nonlinear models of hydrological time series. Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1127-1145.
Mann HB. 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
Mendenhall W, Reinmuth JE. 1971. Statistics for management and economics.
Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.
Nelson DB. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370.
Tesfaye YG, Meerschaert MM, Anderson PL. 2006. Identification of periodic autoregressive moving average models and their application to the modeling of river flows. Water Resources Research, 42(1).
Valipour M, Banihabib ME, Behbahani SMR. 2013. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of hydrology, 476, 433-441.
Wang W, Van Gelder PHAJM, Vrijling JK, Ma J. 2005. Testing and modeling autoregressive conditional heteroskedasticity of streamflow processes. Nonlinear processes in Geophysics, 12(1), 55-66.
Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics bulletin, 1(6), 80-83