تخمین پارامترهای مدل غیرخطی نوع پنجم ماسکینگام در روندیابی سیلاب با الگوریتم نوین شاهین هریس

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 گروه مهندسی آب، دانشگاه فردوسی مشهد

3 هییت علمی دانشگاه صنعتی سیرجان

10.22125/iwe.2021.128119

چکیده

یکی از مسائل عمده در هیدرولوژی مهندسی که ضرورت آن بیش از پیش احساس می‌شود، پیش­بینی چگونگی طغیان و فروکش کردن سیل یا صعود و نزول هیدروگراف رودخانه در نقطه مشخصی از آن است. این مساله را می‌توان با روش روندیابی سیلاب مورد تحلیل قرار داد.
روش ماسکینگام یکی از روش‌های هیدرولوژیکی است که می‌توان با استفاده از آن ضمن صرفه جویی در زمان و هزینه با کارکرد ساده و دقت مناسب روندیابی سیلاب را انجام داد. کاربست روش­های فراکاوشی نتایج رضایت بخشی را در این زمینه تاکنون نشان داده است. از این رو در این پژوهش، به ارزیابی کارایی الگوریتم شاهین هریس (HHO) در تخمین پارامترهای بهینه مدل غیرخطی ماسکینگام پرداخته شد.
در این مقاله ابتدا مدل غیرخطی توسعه یافته نوع پنجم ماسکینگام (NL5) جهت ارزیابی الگوریتم جدید بهینه شاهین هریس(HHO) در روندیابی رودخانه ویلسون (به عنوان پژوهش کاربردی) و رودخانه کارون (مطالعه موردی) مورد استفاده و به­منظور بررسی میزان مطلوبیت یافته­های پژوهش، با نتایج دو الگوریتم ژنتیک (GA) و جستجوی هارمونی (HS) مقایسه گردید.
نتایج الگوریتم HHO برای دو رودخانه ویلسون و کارون نشان دهنده کمینه‌سازی مجموع مربعات باقیمانده‌ها (SSQ) به عنوان تابع هدف می­باشد که برای رودخانه ویلسون برابر با 11.64 و رودخانه کارون برابر با 143050.02 است.
با توجه به نتایج، این الگوریتم عملکرد بهتری نسبت به الگوریتم‌ GA و HS داشته است، در نتیجه الگوریتم پیشنهادی می‌تواند با اطمینان خوبی به­منظور برآورد مقادیر بهینه پارامترهای مدل ماسکینگام غیر خطی مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of the type 5 Muskingum nonlinear model parameters in the flood routing with The Harris Hawks Optimization Algorithm (HHO)

نویسندگان [English]

  • saeid khalifeh 1
  • Saeed Reza Khodashenas 2
  • ,Kazem Esmaili 1
  • vahid khalifeh 3
2 Water Engineering Department, Ferdowsi University of Mashhad
چکیده [English]

One of the major issues in the hydrology is the prediction of flooding and subsidence, or the rise and fall of river hydrographs at a certain point. This can be analyzed by flood routing. The Muskingum method is one of the hydrological methods that can be used to save time and money with simple operation and proper accuracy of flood routing. The use of meta-heuristic methods has shown satisfactory results so far. Therefore, in this study, the performance of Harris hawks optimization (HHO) algorithm in estimating the optimal parameters of the non-linear Muskingum model has been evaluated.
In this paper, the fifth type of Muskingum nonlinear model (NL5) was first used to evaluate the HHO algorithm in the Wilson River (Applied Research) and the Karun River (Case Study). In order to evaluate the desirability of the research findings, the results were compared to the results of the genetic algorithms (GA) and harmonic search (HS).
The results of the HHO algorithm for both the Wilson and Karun rivers indicate the minimization of the sum of squares (SSQ) as the objective function, which is 11.64 for the Wilson River and 143050.02 for the Karun River.
Based on the results, the HHO has better performance than the GA and HS algorithms, so the proposed algorithm can be used with good confidence to estimate the optimal values of nonlinear Muskingum model parameters.

کلیدواژه‌ها [English]

  • optimization
  • HHO
  • Hydrologic routing
  • Muskingum
  • NonLinear type 5 model
 
خلیفه، س.، ع. اسماعیلی، ک. اسماعیلی و س. خداشناس. 1399. کاربست مقایسه ای الگوریتم جستجوی موجودات همزیست با الگوریتم های فراکاوشی در مدل روندیابی سیلاب. نشریه آب و خاک فردوسی مشهد، جلد 34، شماره 2.
زینلی، م.، و م. پوررضا. 1388. تخمین پارامترهای بهینه مدل روندیابی غیرخطی ماسکینگام با استفاده از الگوریتم مورچگان پیوسته. نشریه مهندسی آبیاری و آب ایران، سال هشتم، شماره 31، ص 106-94.
محمدی قلعه نی، م.، و ا. بزرگ حداد. 1389. بهینه سازی پارامترهای مدل غیرخطی ماسکینگام با استفاده از الگوریتم بهینه سازی نورد شبیه‌سازی شده. نشریه آب و خاک فردوسی مشهد، سال 1389، شماره 5، ص 919-908.
Barati R, Badfar M, Azizyan G, Akbari GH. 2017. Discussion of parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm” by Farzan Hamedi,
 Bozorg Haddad O, Hamedi F, Orouji H, Pazoki M, Loáiciga HA. 2015. A re-parameterized and improved nonlinear muskingum model for flood routing. Water Resources Management 29(9):3419- 3440.
Cheng, M. Y. and Prayogo, D. 2014. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. J. Comput. Struct. 139, 98-112.
  Chow, V. T. 1973. Open Channel Hydraulic. 3rd Ed. McGraw Hill Book Company. New York. Inc.
Easa SM. 2013. New and improved four parameter nonlinear Muskingum model. Proceeding of the Institution of Civil Engineering-Water Management. 167(5):288–298
Ehteram, M.; Binti Othman, F.; Mundher Yaseen, Z.; Abdulmohsin Afan, H.; Falah Allawi, M.; Bt. Abdul Malek, M.; Najah Ahmed, A.; Shahid, S.; P. Singh, V.; El-Shafie, A. Improving the Muskingum Flood Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm. Water 2018, 10, 807.
Gavilan G, Houck MH. 1985. Optimal Muskingum River routing. Proceedings of ASCE WRPMD Specialty Conference on Computer Applications in Water Resources, 10-12 June, New York, Reston, VA, USA, 1294–1302.
Geem, Z. W. 2006. Parameter estimation for the nonlinear Muskingum model using the BFGS technigue. Journal of Irrigation and Drainage Engineering, 5: 474-478.
Gill, M. A. 1978. Flood routing by Muskingum method. Journal of Hydrology, 36: 353-363.
Karahan, H., G. Gurarslan., A.M. ASCE and Z.W. Geem. 2013. Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm. Journal of Hydrologic Engineering, 18: 352–360.
Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. 2019. Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872.‏
Kim J. H., Z. W. Geem and E. S. Kim. 2001. Parameter estimation of the nonlinear Muskingum model using harmony search. Journal of the American Water Resources Association, 37:1131-1138.
Khalifeh, S., Esmaili, K., Khodashenas, S., and Akbarifard, S. 2020. Data on Optimization of the Non-linear Muskingum Flood Routing in Kardeh River Using GOA Algorithm. Journal of Data in Brief, Volume 30, https://doi.org/10.1016/j.dib.2020.105398.
McCarthy, G. T. 1938. The unit hydrograph and flood routing. Proc. Conf. of North Atlantic Division, U.S. Army Corps of Engineers, Washington, DC.
Mohan, S. 1997. Parameter estimation of nonlinear Muskingum models using genetic algorithm. J. Hydraulic. Eng, 123: 137–142.
Premual, M. and K.G. RangaRaju. 1998. Variable – parameter stage – hydrograph routing method: I Theory. Journal of Hydrologic Engineering, ASCE, 3: 109-114.
Wilson, E. M. 1974. Engineering hydrology, MacMillan Education, Hampshire, United Kingdom.