مقایسه روابط مختلف برآورد نیمرخ عمقی سرعت طولی بر مبنای روش بهینه‌سازی با استفاده از الگوریتم ژنتیک

نویسندگان

1 گروه مهندسی آب، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران،

3 گروه مهندسی آب،دانشکده کشاورزی دانشگاه رازی، کرمانشاه، ایران

10.22125/iwe.2021.138257

چکیده

توزیع عمقی سرعت طولی در رودخانه­ها و کانال­های روباز برای مدل­سازی بسیاری از فرآیندهای هیدرولیکی مورد نیاز است. از این­رو ارائه مناسب­ترین رابطه برآورد توزیع سرعت که منطبق برداده­های اندازه­گیری باشد همواره مورد توجه محققین بوده و به صورت دائم در حال توسعه است. با توسعه تئوری آنتروپی  و همچنین بهینه­سازی به روش الگوریتم ژنتیک، این روش­ها در طیف وسیعی از علوم مهندسی ازجمله مکانیک سیالات و هیدرولیک به کاربرده شده­اند. در این تحقیق پارامترهای مجهول روابط مرسوم توزیع عمقی سرعت طولی با استفاده از بهینه­سازی بر مبنای روش الگوریتم ژنتیک دو دویی بهینه یابی شدند.  تعداد پارامترهای بهینه شده در مدل­های یانگ، ژولیان ، چیو و تسالیس به ترتیب 4، 5، 3 و 5  پارامتر می­باشند. نتایج تحقیق نشان داد پس از بهینه­یابی پارامترهای روابط، توزیع سرعت یک­بعدی تخمین زده­شده توسط هر چهار مدل ارائه شده در مقایسه با داده­های آزمایشگاهی از دقت بالایی برخوردار است به­گونه­ای که تحلیل آماری نتایج نشان داد مقدار متوسط ریشه میانگین مربعات خطا (RMSE) برای کل شبیه­سازی­ها توزیع سرعت یک بعدی در مدل یانگ054/0 متر بر ثانیه، برای مدل ژولیان برابر با 052/0 متر بر ثانیه، در مدل چیو 042/0 متر بر ثانیه و برای مدل تسالیس 035/0 متر بر ثانیه است. با این وجود نظر به اینکه  تعداد پارامترهای بهینه استخراج شده توسط مدل ژولیان و تسالیس از دو مدل دیگر بیشتر است در مدل­سازی رودخانه­های آبرفتی توصیه می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Different Relationships for Estimating Longitudinal Velocity Depth Profile Based on The Optimization Method Using Genetic Algorithm

نویسندگان [English]

  • Maryam Teymoori Yeganeh 1
  • Rasool Ghobadian 2
  • ,Mohammed Mehdi Heidari 3
1 Department of Water Engineering, Campos of Agriculture and Natural Resources, Razi University, Kermanshah
2 Associate Professor, Water Science Engineering Department, Agriculture Faculty, Razi University, Kermanshah, Iran
3 Associate Professor, Water Science Engineering Department, Agriculture Faculty, Razi University, Kermanshah,Iran
چکیده [English]

Depth distribution of longitudinal velocity in rivers and open canals is required for modeling many hydraulic processes. Therefore, introducing the most appropriate relation to estimating the velocity distribution has always been of interest to researchers and is constantly evolving. With the development of entropy theory and genetic programming based on the principle of natural evolution, these methods have been applied in a wide range of engineering sciences including fluid mechanics and hydraulics. The purpose of this study was to calculate the unknown parameters of velocity distribution relationships and estimate the longitudinal velocity profile using binary genetic algorithm optimization. For this purpose, the unknown parameters of Yang, Julian, Chiu, and Tsallis models, which are 4, 5, 3, and 5 respectively, were optimized using a genetic algorithm. After determining the unknown parameters of each model, a statistical comparison was performed between the measured and estimated velocity values ​​with the optimized relationships. The results showed that the one-dimensional velocity distribution estimated by all four models is accurate related to the experimental data. Root Mean Square Error (RMSE) for all one-dimensional velocity distribution simulations in the Yang model is 0.054, for the Julian model is 0.052, for the Chiu model is 0.042, and for the Tsallis model is 0.035m/s. However, considering the number of optimal parameters extracted by the Julian and the Thessalian models, it is recommended the use of these models to alluvial rivers.

کلیدواژه‌ها [English]

  • Chiu method
  • Deep phenomena
  • Julian model
  • optimization
  • Tsallis model
  • Velocity Distribution
  • Yang model
  امید، م.ح.، کرباسی، م. 1387.کابرد مفهوم آنتروپی در به دست آوردن توزیع سرعت در آبراهه های روباز. چهارمین کنگره مهندسی عمران .دانشگاه تهران.
  البرزی،م. 1393 الگوریتم ژنتیک، ناشر: انتشارات علمی دانشگاه صنعتی شریف
 تیموری یگانه، م.، حیدری، م.م. 1396. توزیع سرعت یک بعدی در مجاری روباز با استفاده از تئوری آنتروپی رنی. هفتمین کنفرانس بین المللی توسعه پایدار و عمران شهری. آذر ماه 1396.  4. فغفور مغربی، م. و رحیم­پور، م. 1386. روشی برای ترسیم خطوط هم سرعت و تخمین دبی در کانال­های روباز. مجله دانشکده فنی، جلد 34، شماره 3، صفحه­های 33 تا 43.
 
 Absi, R. 2011. An ordinary differential equation for velocity distribution and dip-phenomenon in open channel flows, J. Hydraul. Res., 49: 1, 82-89.
 Afzalimehr H, Gallichand J, Sui J and Bagheri E, 2011. Field investigation on friction factor in mountainous cobble bed and boulder bed rivers. International Journal of Sediment Research 26(2): 210-221.
  Aytek A and Kisi O.2008.A genetic programming approach to suspended sediment modeling. Journal of Hydrology 351: 288-298.
 Bonakdari, H. and Larrarte, F. and Lassabatere, L. and Joannis, C. 2008. Turbulent velocity profile in fully developed open channel flows, Environ Fluid Mech., pp. 1-17.
Chiu, C. L. 1987. Entropy and 2-D velocity distribution in open channels. Journal of­ Hydraul Engineering. 114.7: 738-756.
Chiu, C. L., Said, C. A. A. 1995. Maximum and mean velocities and entropy in open-channel flow. Journal of­ Hydraul Engineering. 121.1: 26-35.
Coles, D. 1956. The law of the wake in turbulent boundary layer, J. Fluid Mech. 1, 191–226.
  Guo, J. and Julien P.Y.2003. Modified log-wake law for turbulent flow in smooth pipes. J. Hyd. Res, IAHR, 41, no. 5, 493–501.
Guy H.P. 1956–61. Summary of alluvial-channel data from Rio Grande experiments.
Nezu I. and Rodi, W. 1985 Experimental study on secondary currents in open channel flow, Proc. 21st congress of IAHR, Melbourne, 115-119.
Pu, JH. 2012. Universal velocity distribution for smooth and rough open channel flows. Journal of Applied Fluid Mechanics 6(3): 413-423.
Singh, V. P. and Luo, H. 2008. Entropy theory for distribution of one-dimensional velocity in open channels, J. of Hydrologic Eng., in press.
Teymouri Yeganeh M., Heidari MM. 2020. Estimation of one-dimensional velocity distribution by measuring velocity at two points. Flow Measurement and Instrumentation. 73 (2020) 101737.
  Tsallis, C. 1988. Possible generalization of Boltzmann-Gibbs statistics”, J. Stat. Phys., 52(1-2), 479-487.
Yang, S. Q., Tan, S. K. and Lim, S. Y., 2004. Velocity distribution and dip-phenomenon in smooth uniform open channel flows, J. Hydraul. Eng., 130(12), 1179-1186.