برآورد تبخیرتعرق واقعی حوضه با استفاده از الگوریتم SEBS و منابع اطلاعاتی جهانی (مطالعه موردی: حوضه آبریز نیشابور)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دکتری تخصصی مهندسی آب، عضو هیات علمی، گروه مهندسی آب، مرکز آموزش عالی کاشمر، کاشمر، ایران

2 پژوهشگر گروه پژوهشی سنجش از دور و علم محیطی، مرکز پژوهشی آب و محیط زیست شرق، مشهد، ایران.

3 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 دانشیار دانشکده کشاورزی دانشگاه فردوسی مشهد

5 پژوهشگر گروه سنجش از دور و علوم محیطی، مرکز پژوهشی آب و محیط زیست شرق، مشهد، ایران

چکیده

بی‌تردید مؤلفه‌ تبخیرتعرق واقعی در حوضه آبریز، از مهم‌ترین و پیچیده‌ترین مؤلفه‌های بیلان آب محسوب شده و تلاش‌ها در حوزه مطالعات و تحقیقات در این زمینه، در دهه‌ی اخیر روندی افزایشی داشته است. امروزه دانش سنجش‌ازدور و توسعه الگوریتم‌های مختلف برآورد تبخیرتعرق واقعی، ضمن امکان شناخت بهتر از خصوصیات سطح زمین، اطلاعات مکانی و برآوردهای توزیعی واقعی تبخیرتعرق را میسر ساخته که این مهم در کشور نیز مورد توجه واقع شده است. در همین راستا، در این تحقیق سعی شده است تا با استفاده از روش سنجش ‌از دور و با به‌کارگیری الگوریتم SEBS و نیز بهره‌گیری از منابع اطلاعاتی جهانی که اغلب به‌ندرت در ایران شناخته‌شده است، مقادیر تبخیرتعرق واقعی در مقیاس حوضه ـ سال برآورد گردد. درنهایت با استفاده از رویکرد فوق، ضمن ارزیابی و تحلیل رفتارسنجی نتایج، برآوردهای حاصل به‌صورت روزانه، ماهانه، فصلی و سالانه با مقادیر حاصل از الگوریتم بیشتر شناخته‌شده SEBAL و نتایج مدل هیدرولوژیکی SWAT مقایسه گردید. نتایج حاکی از بیش برآورد مقادیر تبخیرتعرق واقعی حاصل از الگوریتم SEBS در مقایسه با الگوریتم SEBAL بوده و در عین حال، به نسبت وضع موجود، قابل قبول بودن این نتایج است. به‌ویژه اینکه عوامل اصلی این اختلاف، تفاوت دو الگوریتم در محاسبه شار گرمای محسوس و حساسیت بالای الگوریتم SEBS به پارامتر دمای هوا و نیز استفاده از داده‌های زمینی در الگوریتم SEBAL و عدم استفاده از آن‌ها در الگوریتم SEBS است. این موضوع به‌ویژه در شرایطی که با کمبود داده مواجه هستیم، بسیار حائز اهمیت است.

کلیدواژه‌ها


عنوان مقاله [English]

A simple method to estimate basin-scale actual evapotranspiration using SEBS algorithm and global data sources (Case study: Neyshabur basin)

نویسندگان [English]

  • Maysam Majidi Khalilabad 1
  • Parivash Paridad 2
  • kamran Davari 3
  • alireza faridhosseini 4
  • Mohammadreza Azad 5
1 Majidi Khalilabad
2 Remote sensing of Environment Dept., East Water & Research Institute, Mashhad, Iran
3 Associate Professor, Water engineering Department, Ferdowsi University of Mashhad, Iran
4 Associate Professor, Faculty of Agriculture, Ferdowsi University of Mashhad
5 Remote Sensing of Environment Research, EWERI, Mashhad, Iran
چکیده [English]

Actual evapotranspiration (ET) is one of the most important and complex components of the water balance. In recent years, various remote sensing techniques and algorithms have been developed which provide a cost‐effective and reliable estimate of actual ET. In this research, the spatial distribution of actual ET at the basin scale was estimated based on SEBS algorithm and world-known information data sources which are rarely used in Iran. The estimated actual ET values were compared to the results of well-known SEBAL algorithm and the SWAT hydrological model. The study shows that the SEBS algorithm has overestimated actual ET in comparison with SEBAL algorithm. The primary cause of differences between two models is in their algorithms for calculating sensible heat. Moreover, SEBS algorithm is highly sensitive to the air temperature. SEBAL is a more complex and reliable method, but it needs reliable ground-based weather data. On the other hand, SEBS does not depend on ground-based data and its results could be acceptable under limited data condition.

کلیدواژه‌ها [English]

  • : Actual Evapotranspiration
  • GLDAS
  • Water balance
  • Energy balance
ایزدی، ع. 1392. کاربرد و ارزیابی یک مدل توسعه‌یافته تلفیقی آب‌زیرزمینی ـ آب سطحی در حوضه آبریز نیشابور". پایان نامه دکتری تخصصی، گروه مهندسی آب، دانشگاه فردوسی مشهد.
شرکت آب منطقه‌ای خراسان رضوی. 1377. گزارش محاسبه بیلان منابع آب حوضه آبریز نیشابور. جلد دوم، هیدرولوژی.
فرخ‌زاده، م.، ولایتی، س.، حسینی، آ. 1384. تحلیل بحران آب در دشت نیشابور با رویکرد برنامه‌ریزی محیطی. طرح پژوهشی کمیته تحقیقات شرکت سهامی آب منطقه‌ای خراسان رضوی.
Allen, R.G., Trezza, R., Tasumi, M., Trezza, R. 2008. At-surface albedo from Landsat and MODIS satellites for use in energy balance studies of evapotranspiration. Journal of Hydrology Engineering, 13: 51-63
Blümel, K. 1999. A simple formula for estimation of the roughness length for heat transfer over partly vegetated surfaces. Journal of Applied Meteorology and Climatology, 38: 814 -829.
Brutsaert, W., 1982. Evaporation into the Atmosphere: Theory, History, and Applications. Reidel Publishing, Dordrecht.
Burt, C. M., A. J. Mutziger, R. G. Allen, and T. A. Howell. 2005. Evaporation research: Review and interpretation. Journal of Irrigation and Drainage Engineering, 131: 37-58.
Gibson, L.A., Münch, Z., Engelbrecht, J. 2011. Particular uncertainties encountered in using a pre-packaged SEBS model to derive evapotranspiration in a heterogeneous study area in South Africa. Journal of Hydrolgy and Earth System Science, 15: 295-310.
Glenn, E. P., A. R. Huete, P. L. Nagler, K. K. Hirschboeck, P. Brown. 2007. Integrating remote sensing and ground methods to estimate evapotranspiration, Journal of Critical Reviews in Plant Sciences, 26: 139-168.
Gowda, P.H., Chavez, J.L., Colaizzi, P.D., Evett, S.R., Howell, T.A., Tolk, J.A., 2008. Evapotranspiration mapping for agricultural water management: Present status and challenges. Journal of Irrigation Science, 26: 223–237.
Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998. AERONET – A federated instrument network and data archive for aerosol characterization. Journal of Remote Sensing Environment, 66: 1–16.
Katul, G.G., Parlange, M.B. 1992. A Penman-Brutsaert model for wet surface evaporation, Journal of Water Resources Research, 28: 121-126.
Liang, S., 2001. Narrowband to broadband conversions of land surface albedo I: algorithms, Journal of Remote Sensing of Environment, 76: 213–238.
Majidi M, Alizadeh A, Farid A, Vazifedoust M. 2015. Analysis of the effect of missing weather data in estimating daily reference evapotranspiration under different climatic conditions. Water Resour Manage, 29:2107—2124
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. 1997. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press. New York.
Rahman, H., Dedieu, G., 1994. SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Journal of Remote Sensing, 15: 123-143.
Shuttleworth, W.J., Gurney, R. J., Hsu, A. Y., Ormsby, J. P. 1989.  FIFE: The variation in energy partition at surface flux sites. IAHS Publication, 186, 67-74.
Sobrino, J.A., Kharraz, J.E., Li, Z. L., 2003. Surface temperature and water vapour retrieval from MODIS data. Journal of Remote Sensing, 24: 5161–5182.
Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Journal of Hydrology and Earth System Sciences, 6 (1): 85–99.
Su, Z., 2005. Estimation of the surface energy balance. Wiley & Sons, Vol. 2: 731-752.
Su, Z., Schmugge, T., Kustas, W.P., Massman, W.J. 2001. An evaluation of two models for estimation of roughness height for heat transfer between the land surface and atmosphere. Journal of Applied Meteorology, 40 (11), 1933–1951.
Tanaka, N., Kume, T., Yoshifuji, N., Tanaka, K., Takizawa, H., Shiraki, K., Tantasirin, C., Tangtham, N., Suzuki, M. 2008. A review of evapotranspiration estimates from tropical forests in Thailand and adjacent regions. Journal of Agriculture and Forest Meteorology, 148: 807–819.
Vinukollu, R. K., Wood, E. F., Ferguson, C. R., Fisher, J. B. 2011. Global estimates of evapotranspiration for climate studies using multi‐sensor remote sensing data: Evaluation of three process‐based approaches. Journal of Remote Sensing of Environment, 115: 801‐823.