تخمین تراز سطح آب در کانال‌های مرکب با سیلابدشت‌های واگرا و همگرا

نویسندگان

1 عضو هیئت علمی گروه مهندسی آب ، دانشکده کشاورزی دانشگاه لرستان

2 گروه مهندسی آب دانشگاه لرستان

3 گروه سازه های آبی، دانشکده کشاورزی, دانشگاه لرستان، خرم آباد، لرستان

4 گوه مهندسی آب دانشگاه لرستان

چکیده

حجت الله یونسی[1]، علی صمدی رحیم[2]، حسن ترابی پوده[3]، بابک شاهی نژاد[4]
 
1 استادیار گروه مهندسی آب  دانشکده کشاورزی دانشگاه لرستان، خرم آباد، ایران،  yonesi.h@lu.ac.ir ،    (نویسنده مسئول)
2 دانشجوی دکتری ساز های آبی گروه مهندسی آب دانشکده کشاورزی دانشگاه لرستان، خرم آباد، ایران،alisamadirahim@yahoo.com  ،
3  دانشیار گروه مهندسی آب دانشکده کشاورزی دانشگاه لرستان، خرم آباد، ایران،  torabi1976@gmail.com ،  
4  استادیار گروه مهندسی آب  دانشکده کشاورزی دانشگاه لرستان، خرم آباد، ایران، shahinejad.ba@lu.ac.ir ،  

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Water Surface Elevation in Non-Prismatic Compound Channels

نویسندگان [English]

  • Hojjat allah Yonesi 1
  • ali samadirahim 2
  • Hassan Torabi podeh 3
  • Babak Shahinejad 4
1 water Eng. agriculture faculty of lorestan university
2 Department Water Eng. Lorestan University
3 Ph.D. Student In Water Structure of Lorestan University, Khorramabad, Iran
4 Department Water Eng. Lorestan University
چکیده [English]

Predicting the water level in non-prismatic compound channels is necessary to determine the boundaries of floodplains in the range of converging or diverging and also to determine the stage-discharge curves of river flow during floods. In this study, using laboratory data taken from three compound channels with divergent and convergent floodplains at different angles of divergence and convergence, depth ratios and different roughness ratios, the relationships for estimating the water level in such sections have been investigated. The maximum relative error of the proposed relationships for depth ratios is less than 0.4 in divergence and convergence conditions is 13.29% and in depth ratios is greater than 0.4 and in divergence and convergence floodplains is about 1.98%. The results show that the water surface level along a diverging and converging range in non-prismatic compound channel with different divergence angles respectively increases and decreases with increasing depth ratios. Also, in this experimental conditions, the water level in the divergence (convergence) range of floodplain is affected by factors such as depth ratio and relative distance and follows less than relative roughness and divergence (convergence) angle

کلیدواژه‌ها [English]

  • Water surface elevation
  • diverging and converging angles
  • relative roughness
  • depth ratio
  • Non-prismatic compound channel sections
یونسی، ح.، امید، م.ح.، ایوب زاده، س.ع. 1394. اثر زبری سیلابدشت بر هیدرولیک جریان در مقاطع مرکب با سیلابدشت غیرمنشوری. مجله پژوهش آب ایران، جلد 9، شماره 2، پیاپی 17، ص 72-63.
Bousmar, D. and Zech, Y. 2004. Velocity distribution in non-prismatic compound channels. Water Management, 157(WM2): 99-108.
Bousmar, D., Proust, S. and Zech, Y. 2006. Experiments on the flow in a enlarging compound channel. Proceeding River Flow, Lisbon, Portugal, (1): 323-332.
Cao, Z., Meng, J., Pender, G. and Wallis, S. 2006. Flow Resistance and Momentum Flux in Compound Open Channels. Journal of Hydraulic Engineering, 132(12): 1272-1282.
Knight, D.W. and Demetriou, J.D. 1983. Flood plain and main channel flow interaction. Journal of Hydraulic Engineering, 109(8): 1073-1092.
Knight, D.W. and Hamed, M.E. 1983. Boundary shear in symmetrical compound channels. Journal of Hydraulic Engineering, 110(10): 1412-1430.
Mohanta, A., Naik, B., Patra, K.C. and Khatua, K.K. 2014. Experimental and numerical study of flow in prismatic and non-prismatic section of a converging compound channel. International Journal of Civil Engineering Research, 5(3): 203-210.
Myers, W.R.C. 1987. Velocity and discharge in compound channels. Journal of Hydraulic Engineering, 113(6): 753-766.
Naik, B. and Khatua, K.K. 2015. Water surface profile computation in non-prismatic compound channels. International conference on water resources, coastal and ocean engineering, Published by Elsevier B.V., 4:1500-1507.
Proust, S., Bousmar, D., Rivière, N., Paquier, A. and Zech, Y. 2010. Energy losses in compound open channels. Advances in Water Resources, 33: 1-16.
Rezaei, B. 2006. Overbank flow in compound channels with prismatic and non-prismatic floodplains. PhD Thesis, Univ. of Birmingham, U.K.
Rezaei, B. and Knight, D.W. 2009. Application of the Shiono and Knight Method in compound channels with non-prismatic floodplains. Journal of Hydraulic Research, 47(6): 716–726.
Rezaei, B. and Knight, D.W. 2011. Overbank Flow in Compound Channels with Non-prismatic Floodplains. Journal of Hydraulic Engineering, 137(8): 815-824.
Shiono, K. and Knight, D.W. 1991. Turbulent Open channel flows with variable depth across the channel. Journal of Fluid Mechanics, .222: 617-646.
Tominaga, A. and Nezu, I. 1991. Turbulent structure in compound open-channel flows. Journal of Hydraulic Engineering, 117(1): 21-41.
Yonesi, H.A., Omid, M.H. and Ayyoubzadeh, S.A. 2013. The Hydraulics of flow in non-prismatic compound channels. Journal of Civil Engineering and Urbanism, 3(6): 342-356.