Integrated Water Resources Management of Minab Basin, Southern Iran, Using Modified Sustainability Index

Document Type : Original Article

Authors

1 Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, Tehran University, Karaj, Iran

2 Irrigation and Reclamation Engineering Department University of Tehran

3 Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad.

4 Water Resource Control Engineer at State Water Resources Control Board, Sacramento, California, USA, Shahab.Araghinejad@stantec.com

Abstract

The catchment area of ​​the Minab river basin and its main branches, as a part of Makren coast, southern Iran, are one of the important areas for water resources planning and management. The aim of this study was to set-up a comprehensive water resource planning and management model, involving WEAP software, for the area. The area includes the Minab, Jeghine Toukahoor, Manoojan, Roodan, Nodej, Dehkohan, Mosaferabad and Faryab Galashgerd. Two scenarios including: (RS) as the reference scenario, and a conservative agricultural development (CAS) were implemented for the future horizon of year 1410, using WEAP model. Then the outputs were evaluated using the performance criteria including; volumetric reliability, reversibility, vulnerability and stability indices. A 15-water year data (2000-2014) was used, 10 years of that for calibration purposes and the rest of 5 years data for verification. The values of evaluation indices, coefficient of determination and Nash-Sutcliff coefficient, for calibration period were equal to 0.98, 0.97 for the Esteghlal dam volume and 0.98 and 0.98 for the hydrometric stations, and 0.90 and 0.86 for the groundwater aquifers, respectively. On the other hand, for the verification period, the values of the above-mentioned indices were equal to 0.98 and 0.98 for Esteghlal dam volume, 0.78 and 0.70 for hydrometric stations, and 0.97 and 0.88 for the groundwater aquifers, respectively. The above-mentioned index values indicate that the modelling results are acceptable. Moreover, between the two considered scenarios, the scenario of conservative agricultural development, with a sustainability index of 55.47%, has a higher priority.

Keywords

Main Subjects


دهقان، ز.، دلبری، م. و محمدرضا‌پور ا.ا. (1394). برنامه‌ریزی تخصیص منابع آب تحت سناریو‌های مدیریتی در حوضه گرگان‌رود. دانش آب و خاک، 25 (3)، 117-132.
شوریان، م. و موسوی س. ج. (1385). برنامه‌ریزی تخصیص منابع آب در سطح حوضه آبریز با اهداف انتقال آب بین حوضه‌ای. دومین کنفرانس مدیریت منابع آب، 3و4 بهمن، دانشگاه صنعتی اصفهان، 1-8.
صالح‌پور لاقانی، ج.، اشرف‌زاده، ا. و موسوی، س. ع. (1397). مدیریت تخصیص منابع آب در حوضه آبریز حبله‌رود با ترکیب مدل‌های SWAT و WEAP. تحقیقات منابع آب ایران، 14 (3)، 278-290.
علیزاده، ح. (1385). ارزیابی تأثیر هیدرولوژیکی سناریوهای تخصیص آب در سطح حوضه با استفاده از نرم‌افزار WEAP. پایان‌نامه کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.
یزدان‌پناه، ط.، خداشناس، س. ر.، داوری، ک. و قهرمان. (1387). مدیریت منابع آب حوضه آبریز با استفاده از مدل WEAP (مطالعه موردی حوضه ازغند)، علوم و صنایع کشاورزی، 22.
‎ Chen, Y., Zhang, D., Sun, Y., Liu, X., Wang, N., & Savenije, H. H. (2005). Water demand management: a case study of the Heihe River Basin in China. Physics and Chemistry of the Earth, Parts A/B/C, 30(6-7), 408-419.
Jakeman, A. J., Voinov, A. A., Rizzoli, A. E., & Chen, S. H. (Eds.). (2008). Environmental modelling, software and decision support: State of the art and new perspective (Vol. 3). Elsevier.
Leemhuis, C., Jung, G., Kasei, R., & Liebe, J. (2009). The Volta Basin water allocation system: Assessing the impact of small-scale reservoir development on the water resources of the Volta Basin, West Africa. Advances in Geosciences, 21, 57-62.
Lianqing, X., Yongkun, L., Zhenghang, F., & Jieyou, L. (2012). Optimal Utilization Simulation and Decision Making on Water Resources System. Procedia Environmental Sciences, 12, 1097-1103.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Motovilov, Y. G., Gottschalk, L., Engeland, K. and Rohde, A. (1999). Validation of distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98-99: 257-277.
Raskin, P., Hansen, E., Zhu, Z., & Stavisky, D. (1992). Simulation of water supply and demand in the Aral Sea Region. Water International, 17(2), 55-67.
Sandoval-Solis, S., & McKinney, D. C. (2011). Water planning and management for large scale river basins: Case of study of the Rio Grande/Rio Bravo transboundary basin. Center for Research in Water Resources, University of Texas at Austin.
Yates, D., Purkey, D., Sieber, J., Huber-Lee, A., & Galbraith, H. (2005). Weap21—a demand-, priority-, and preference-driven water planning model: Part 2: Aiding freshwater ecosystem service evaluation. Water International, 30(4), 501-512.