تحلیل و ارزیابی ابزارهای مدیریت کیفی در شبکه های های توزیع آب در مقابل ورود آلودگی در شبکه آب شرب شهر زاهدان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی، گروه مهندسی عمران، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 گروه مهندسی عمران، دانشکده شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

3 گروه عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

4 گروه مهندسی عمران دانشگاه سیستان و بلوچستان

چکیده

رشد جمعیت و گسترش شهرنشینی مهم‌ترین دلایل افزایش آلودگی در جهان امروز است. ورود آلودگی­ به شبکه­های توزیع آب شرب شهری در اثر وقوع پدیده مکش، می­تواند خسارات جبران‌ناپذیری به‌سلامت انسان وارد کند. آگاهی و شناخت از منابع ورود آلاینده و نحوه حرکت آن باعث مدل‌سازی مناسب این پدیده و انجام مدیریت بحران مناسب در زمان نفوذ این آلاینده­ها به شبکه می­گردد. به‌منظور شبیه­سازی حرکت نیترات در خاک، معادله انتقال-پخش آلودگی خاک در MATLAB کد نویسی گردید. سپس شبکه توزیع شماره 2 آب شرب شهر زاهدان به‌عنوان منطقه مطالعاتی مدنظر قرارگرفته و نقاط مستعد با غلظت بالای آلاینده در شبکه شناسایی گردیدند. شبیه­سازی شبکه در اثر وقوع دوساعته آلودگی، با استفاده از مدل عددی EPANET مورد مدل­سازی قرار گرفت. جهت مدیریت کیفی آب در شبکه از دو ابزار تخلیه آب با غلظت غیر مجاز و جریان رقیق‌ساز بکار گرفته‌شده و نتایج آن­ها در مدیریت بحران مذکور مورد مقایسه قرار گرفتند. نتایج شبیه­سازی حرکت آلاینده در خاک، غلظت غیرمجاز نیترات در مجاورت لوله با مقدار بیش از 50 میلی­گرم بر لیتر را نشان داد. نتایج به‌کارگیری ابزار مدیریت کیفی تخلیه آب با غلظت غیرمجاز نشان داد که با قطع نمودن جریان به مدت 1/1 تا 3/1 بازه زمانی تزریق آلودگی به شبکه و همچنین خروج آب به میزان 5 تا 8 درصد دبی پایه لوله، می­توان از ورود آلودگی به نقاط دیگر شبکه جلوگیری نمود. علاوه بر این برای اولین‌بار تأثیر مثبت و کارآمد ابزار جریان رقیق‌ساز در مدیریت کیفی شبکه آب به اثبات رسید؛ به‌گونه‌ای که مقدار جریان رقیق­ساز لازم به‌منظور بهبود وضعیت کیفی شبکه، حدود 16 درصد دبی پایه لوله محاسبه گردید. استفاده از این مقادیر شبیه‌سازی‌شده در شرایط مختلف به‌منظور مدیریت بحران ورود آلاینده به شبکه توزیع آب، امری حیاتی می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis and Evaluation of Water Quality Management Tools in Water Distribution Networks Against Pollution Entrance in Zahedan Water Distribution Network

نویسندگان [English]

  • siroos Harif 1
  • Gholamreza Azizyan 2
  • Mohammad Givehchi 3
  • Mohsen Dehghani Darmian 4
1 Faculty of Engineering,Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2
3 Civil department, Shahid Nikbakht Engineering faculty, Sistan & Balouchestan university, Zahedan, Iran
4 Civil Engineering Department, University of Sistan and Baluchestan
چکیده [English]

Population growth and urbanization are the main reasons for increased pollution nowadays. Pollution entrance into urban drinking water distribution networks, can cause irreparable damage to human health as a result of the suction phenomenon. Awareness and understanding of pollutant sources and the process of contamination transport in the water network leads to advancements in the development of suitable modeling of this phenomenon, as well as, enabling proper crisis management, when the contaminants enter the network. In order to simulate the movement of nitrate in the soil, the nitrate advection-dispersion equation was programmed in MATLAB. The second zone of water distribution network of Zahedan has been considered as the study area and potential points with high concentration of pollutants in the network have been identified. Network simulation, after two hours of contamination, was tested for water contamination by using EPANET software. To manage the network pollution crisis, two water quality management tools were used in the distribution network, including polluted water discharging and dilution flow, then their results were compared in the crisis management. The results of simulating the movement of pollutants in the soil demonstrated that nitrate concentration near the pipe is unallowable and greater than 50 mg/l. The results of discharging of the polluted water showed that by closing pipes from 1.1 to 1.3 of the pollution injection time and also discharging water from 5 to 8% of the base pipe flow can prevent the pollution from entering   other parts of the network. Moreover, For the first time, efficiency and positive performance of dilution flow as another tool for quality management of water distribution network was proved. The Required dilution flow to treat the quality of water was determined to be approximately 16% of the base pipe flow. In order to manage the pollution crisis in the water distribution network, it is vital to use these valuable tools in different situations.

کلیدواژه‌ها [English]

  • Water Quality Management Tools
  • Water Network Pollution
  • Suction Phenomenon
  • Discharge of polluted water
  • Dilution Flow
شبانکاره فرد، ا.، ر، حیاتی و س. دوبرادران. 1393.  بررسی کیفیت فیزیکی، شیمیایی و میکروبی آب آشامیدنی شبکه توزیع شهر بوشهر در سال ۱۳۹۱. سال هفدهم، شماره 6،ص ۱۲۲۳-۱۲۳۵
قنادی،. م .1382. راهبردهای کنترل کیفیت در شبکه‌های توزیع آب. فصلنامه آب و محیط‌زیست. ص 11-4
کیانی، س.، فتحی مقدم، م.، فتحی، ا و ع، حقیقی. 1397. مدل‌سازی عددی جریان گذرا در شبکه آب‌رسانی ویسکوالاستیک. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، دوره 9 شماره 1، ص 75-61.
منزوی، م. ت .1388. آب‌رسانی شهری. تهران، موسسه انتشارات دانشگاه تهران.
مؤسسه استاندارد و تحقیقات صنعتی ایران. استاندارد ملی ایران 1053 آب آشامیدنی ویژگی‌های فیزیکی و شیمیایی تجدید نظر پنجم.
نصیرپور، ح.، نصیریان، علی و ا، اکبرپور. 1398. تعیین موقعیت بهینه شیرهای فشارشکن در شبکه توزیع آب مطالعه موردی: شبکه توزیع آب شهر بیرجند. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، دوره 10، شماره 1، ص 33-17.
Balbus, J.M. and M.E, Lang. 2001. Is the water safe for my baby? Pediatric Clinics of North America, 48(5), pp.1129-1152.
Bashi-Azghadi, SN., A, Afshar, and MH, Afshar. 2018. Multi-period response management to contaminated water distribution networks: Dynamic programming versus genetic algorithms. Engineering Optimization. 4;50(3):415-29.
. Corso, P.S., M.H, Kramer., K.A, Blair., D.G, Addiss., J.P, Davis and A.C, Haddix. 2003. Costs of illness in the 1993 waterborne Cryptosporidium outbreak, Milwaukee, Wisconsin. Emerging infectious diseases, 9(4), p.426.
Darmian, M. D., S. A. H, Monfared., G, Azizyan., S. A, Snyder and J. P, Giesy. 2018. Assessment of tools for protection of quality of water: Uncontrollable discharges of pollutants. Ecotoxicology and environmental safety, 161, 190-197.
de Winter C, Palleti VR, Worm D, Kooij R. 2019. Optimal placement of imperfect water quality sensors in water distribution networks. Computers & Chemical Engineering. 2; 121:200-11.
Farhadian, M., O.B, Haddad., S, Seifollahi-Aghmiuni and H.A,  Loáiciga. 2014. Assimilative capacity and flow dilution for water quality protection in rivers. Journal of Hazardous, Toxic, and Radioactive Waste, 19(2), p.04014027.
Greer, F.R. and M, Shannon. 2005. Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics, 116(3), pp.784-786.
Hammer, M.J. 2000. Water and Wastewater Technologies. 2nded. John Wiley and Sons, NewYork, 137-157.
LeChevallier, M. W., R. W, Gullick., M. R, Karim., M, Friedman and J. E, Funk. 2003.The potential for health risks from intrusion of contaminants into the distribution system from pressure transients. Journal of Water and Health, 1(1), 3-14.
McGhee, T. J and E. W, Steel. 1991. Water supply and sewerage (Vol. 6). New York: McGraw-Hill.
Monfared, S. A. H., M. D, Darmian., S. A, Snyder.,G, Azizyan.,B, Pirzadeh and M. A, Moghaddam. 2017. Water quality planning in rivers: assimilative capacity and dilution flow. Bulletin of environmental contamination and toxicology, 99(5), 531-541.
Munavalli, GR., and MM, Kumar. 2003. Optimal scheduling of multiple chlorine sources in water distribution systems. Journal of water resources planning and management. 129(6):493-504.
Naserizade, SS., MR, Nikoo, and Montaseri H. 2018. A risk-based multi-objective model for optimal placement of sensors in water distribution system. Journal of hydrology. 1; 557:147-59.
Nikel, D., 2019. Norway water crisis: Thousands fall ill on island near bergen. https://www.forbes.com/sites/davidnikel/2019/06/15/norway water-crisis-thousands-fall-ill-on-island-near-bergen/#68185250616d, [Accessed: 2019-08-30].
Preis, A., A, Ostfeld. 2008. Multiobjective contaminant sensor network design for water distribution systems. Journal of Water Resources Planning and Management.134(4):366-77.
Rasekh A, and Brumbelow K. 2014. Drinking water distribution systems contamination management to reduce public health impacts and system service interruptions. Environmental Modelling & Software. 1; 51:12-25.
Soudani, A., M, Chiban., M, Zerbet and F, Sinan. 2011. Use of Mediterranean plant as potential adsorbent for municipal and industrial wastewater treatment. Journal of Environmental Chemistry and Ecotoxicology, 3(8), 199-205.
US EPA. 2003. Response protocol toolbox: Planning for and responding to drinking water contamination threats and incidents - overview and application, US Environmental Protection Agency.
White House. 2013. Presidential policy directive Critical infrastructure security and resilience. Accessed August 15, 2019.