بهینه‌سازی چند‌هدفه شبکه‌های توزیع آب شهری با استفاده از الگوریتم‌های فراکاوشی PESA-II و SPEA-II

نویسندگان

1 گروه مهندسی آب، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

با توجه به محدودیت شدید منابع آب، هزینه­بر بودن ساخت و بهره­برداری سامانه­های آبرسانی و افزایش سریع جمعیت، طراحی بهینه این شبکه­ها، از ضروریات می­باشد. مسئله کمینه کردن هزینه از طریق کمینه­سازی قطر لوله­های شبکه انجام می­شود که موجب کاهش فشار در شبکه می­شود. از آنجایی که تامین فشار مناسب در گره­ها از اصول مهم طراحی است، بنابراین در این تحقیق، مسئله بهینه­سازی در چند شبکه نمونه با اهداف کمینه­سازی هزینه و کمبود فشار در کل شبکه تعریف شد. از نرم­افزار EPANET برای تحلیل هیدرولیکی شبکه­های نمونه استفاده شد و فرآیند بهینه­سازی چندهدفه از طریق کد­نویسی الگوریتم­های فرا­کاوشی PESA-II وSPEA-II  در نرم­افزار متلب و  اتصال آن­ها به EPANET صورت گرفت. تابع هزینه ابتدا فقط با در نظر گرفتن رابطه بین هزینه، قطر و طول لوله­ها تعریف شد. سپس در تعریف بعدی، هزینه ناشی از تعدی از محدوده مجاز فشار که حداقل و حداکثر فشار مجاز به ترتیب 30 و 60 متر در نظر گرفته شده­اند، نیز به این تابع افزوده شد و برنامه مجددا با تعداد تکرارهایی که به بهترین جواب ختم شود، اجرا گردید. نتایج نشان داد این الگوریتم­ها توانایی بالایی در یافتن جواب­های بهینه دارند. در این الگوریتم­ها، در نظر گرفتن هزینه تعدی از حدود مجاز فشار سبب می­شود، بهترین جوابی که تا به حال سایر محققین برای شبکه­های نمونه به­دست آورده­اند، که برای شبکه دو حلقه­ای و لانسی به ترتیب، هزینه 419000 و 1069393 دلار و کمبود فشار صفر بود، حاصل شود و با تعداد تکرار پایین، در شبکه دو حلقه­ای برای هر دو الگوریتم با 20 تکرار و در شبکه لانسی برای الگوریتم­های PESA-II و SPEA-II به ترتیب با 200 و 140 تکرار، به تعداد جواب بهینه بیشتری دست پیدا کنیم و زمان رسیدن به همگرایی به طور قابل توجهی کاهش یابد، به­طوری­که در شبکه دو حلقه­ای، زمان اجرای الگوریتم­های PESA-II و SPEA-II به ترتیب 55/0 و 59/0 دقیقه و در شبکه لانسی به ترتیب 1/8 و 4/7 دقیقه بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-Objective Optimization of Urban Water Distribution Networks Using PESA-II and SPEA-II Metaheuristic Algorithms

نویسندگان [English]

  • Negin Zarei 1
  • Arash Azari 1
  • Mohammad Mehdi Heidari 2
1 Department of Water Engineering, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran
چکیده [English]

As for the severe limitation of water resources, costly construction and operation of water supply systems and rapid population growth, the optimal design of these networks is essential. The problem of cost minimization is done by minimizing the diameter of the network pipes, which reduces the pressure in the network. Since providing adequate pressure in the nodes is one of the important design principles, so in this study, the problem of optimization in several sample networks was defined with the objectives of minimizing the cost and lack of pressure in the whole network. EPANET software was used for hydraulic analysis of sample networks and the multi-objective optimization process through coding of PESA-II and SPEA-II algorithms in MATLAB software and their connection to EPANET face Took. The cost function was initially defined only by considering the relationship between cost, diameter, and pipe length. Then, in the next definition, the cost of exceeding the allowable pressure range, where the minimum and maximum allowable pressures are 30 and 60 meters, respectively, was added to this function, and the program again with the number of repetitions that ended in the best answer Was implemented. The results showed that these algorithms have a high ability to find optimal solutions. In these algorithms, considering the cost of exceeding the allowable pressure limits results in the best answer that other researchers have ever obtained for sample networks, which for the two-loop and lansey network, The cost was 419000 and 1069393 $ respectively, and the pressure shortage was zero and with a low number of iterations, in the two-loop network for both algorithms with 20 iterations and in the lansey network for PESA-II and SPEA-II algorithms  with 200 and 140 iterations respectively, to achieve a higher number of optimal answers and the time to achieve convergence is significantly reduced, so that in the two-loop network, the execution time of PESA-II and SPEA-II algorithms are 0.55 and 0.59 minutes respectively, and in the lansey network It was 1/8 and 7.4 minutes respectively.

کلیدواژه‌ها [English]

  • Multi-Objective Optimization
  • Urban water distribution network
  • PESA-II
  • SPEA-II
Alperovits, E. and Shamir, U. 1977. Design of optimal water distribution systems. water resources reearch, 13(6): 885-900.
Atiquzzaman, Md., liong, s-y. and xinying, yu. 2006. Alternative decision making in water distribution network with NSGA-II. water resources planning and management, 132(2): 122-126.
Bi, W., Dandy, G. C. and Maier, H. R. 2015. Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge. Environmental Modelling & Software, 69: 370-381.
Corne, D. W., Knowles, J. D. and Oates, M. J. 2000. The pareto-Envelope based selection algorithm for multi-objective optimization.In: Parallel problem solving from nature-PPSNVI, Berlin, pp. 839-848.
Cunha, M. D. C. and Sousa, J. 1999. Water distribution network design optimization: simulated anneling approach. Water Resour Plann Manage, 125(4): 215-221.
Do, N., Simpson, A., Deuerlein, J. and Piller, O. 2017. Demand estimation in water  distribution systems: solving underdetermined problems using genetic algorithms. Procedia Engineering, 186: 193-201.
Eusuff, M. M. and Lansey, K. E. 2003. Optimization of water distribution network design using the shuffled frog leaping algorithm. Water Resour Plann Manage, 129(3): 210-225.
Ghajarnia, N., Bozorg, H. O. and Marino, M. A. 2010. Performance of a novel hybrid algorithm in the design of   water networks. Water management, 164(4): 173-191.
Khedr, A., Tolson, B. and Ziemann, S. 2015. Water distribution system calibration: manual versus optimization-based approach. Procedia Engineering, 119: 725-733.
Lansey, K. E., EL-Shorbagy, W., Ahmed, I., Araujo, J. and Haan, C. T. 2001. Calibration assessment and data collection for water distribution network. Journal of hydraulic engineering, 127(4): 270-279.
Lin, M-D., Liu, Y-H., Liu, G-F. and Chu, C-W. 2007. Scatter search heuristic for least-cost design of water distribution networks. Engineering Optimization, 39(7): 857-876.
Marques, J., Cunha, M. and Savić, D. A. 2015. Multi-objective optimization of water distribution systems based on a real options approach. Environmental Modelling & Software, 63(C): 1-13.
Minaei, A., Haghighi, A. and Ghafouri, H. R. 2019. Computer-Aided decision-making model for multiphase upgrading of aged water distribution mains. Water Resour Plann Manage, 145(5): 1-11.
Montesinos, P., Garsia-Guzman, A. and Ayuso, J. L. 1999. Water distribution network optimization using a modified genetic algorithm. Water Resources Research, 35(11): 3467-3473.
Moosavian, N. and Kasaee Roodsari, B. 2014. Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm and Evolutionary Computation 17(Supplement C), 14-24.
Mora-Melià, D., Martínez-Solano, F. J., Iglesias-Rey, P. L. and Gutiérrez-Bahamondes, J. H. 2017. Population Size Influence on the Efficiency of Evolutionary Algorithms to Design Water Networks. Procedia Engineering, 186: 341-348.
Palod, N., Prasad, V. and Khare, R. 2020. Non-parametric optimization technique for water ditribution in pipe networks. Water Supply, 20(8): 3068-3082.
Sedki, A. and Ouazar, D. 2012. Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems. Advanced Engineering Informatics, 26(3): 582-591.
Savic, D. and Walters, G. 1997. Genetic algorithms for least-cost design of water distribution networks. Journal of water resources planning and management, 123(2): 67-77.
Zheng, F., Simpson, A. and Zecchin, A. 2015. Improving the efficiency of multi-objective evolutionary algorithms through decomposition: An application to water distribution network design. Environmental Modelling & Software, 69(C): 240-252.
Zitzler, E., Laumanns, M. and Thiele, L. 2001. SPEA2: Improving the strength pareto evolutionary algorithm. Computer engineering and networks laboratory (TIK), Department of electrical engineering, Swiss Federal Institute Of Technology (ETH), 103: 1-21.
Zitzler, E. and Thiele, L. 1999. Multi-objective Evolutionary Algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on evolutionary computation, 2(4): 257-272.