ارزیابی و شبیه‌سازی تاثیر مدیریت سطح ایستابی بر عملکرد برنج و اجزای آن با استفاده از مدل DSSAT

نویسندگان

1 گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 گروه مهندسی آب- دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استادیار گروه علوم و مهندسی باغبانی، مجتمع آموزش عالی تربت جام

4 گروه علوم کشاورزی، دانشگاه پیام نور، ایران

چکیده

مدل­های شبیه­سازی ابزارهای مناسبی برای پیش­بینی اثرات سناریوهای مختلف مدیریتی و انتخاب مناسب­ترین راهکارها در سیستم های تولید کشاورزی می­باشند. در این تحقیق، پس از ارزیابی کارایی مدل DSSAT، اثر مدیریت سطح ایستابی بر رشد و عملکرد برنج بررسی شد. آزمایش­های مزرعه­ای مورد نیاز در قالب طرح بلوک‌های کامل تصادفی با چهار تیمار آبیاری و سه تکرار در طول یک ‌فصل کشت برنج در مزرعه پژوهشی دانشگاه علوم کشاورزی و منابع طبیعی ساری اجرا شد. تیمارهای آبیاری شامل آبیاری متداول یا غرقابی (شاهد) با ارتفاع 5 سانتی­متری آب در بالای سطح خاک (I1)، کنترل سطح ایستابی در سطح خاک (I2)، کنترل سطح ایستابی در عمق 5 سانتی‌متری (I3) و کنترل سطح ایستابی در عمق 15 سانتی‌متری (I4) بودند. در طول فصل کشت برنج و در زمان برداشت، شاخص سطح برگ، وزن خشک اندام هوایی، ارتفاع بوته، تعداد پنجه، عملکرد بیولوژیک و عملکرد دانه اندازه­گیری شدند. از داده­های تیمار I1 برای واسنجی و از داده­های سایر تیمارها برای صحت­سنجی مدل استفاده شد. در هر دو مرحله واسنجی و صحت­سنجی، مدل از کارایی مناسبی برای پیش­بینی تاریخ­های فنولوژیک، شاخص سطح برگ، عملکرد بیولوژیک و عملکرد دانه برخوردار بود. در مرحله واسنجی و صحت­سنجی، جذر میانگین مربعات خطای نرمال شده به­ترتیب در محدوده 6/7- 7/0 و 6/7-1 درصد و شاخص توافق ویلموت به­ترتیب در محدوده 99/0-78/0 و 99/0-82/0 قرار داشت. تیمارهای آبیاری ازنظر ارتفاع بوته، تعداد پنجه در هر کپه، شاخص سطح برگ، عملکرد دانه و عملکرد بیولوژیک دارای تفاوت معنی­داری بودند. از میان تیمارهای مختلف، بیشترین عملکرد دانه (5584 کیلوگرم در هکتار) مربوط به تیمار شاهد بود. میزان عملکرد دانه در تیمارهای I2، I3 و I4 به­ترتیب به میزان 7/4، 6/4 و 2/39 درصد کمتر از مقدار آن در تیمار شاهد بود. بهره­وری مصرف آب در تیمارهای I1، I2، I3 و I4 به­ترتیب 48/0، 65/0، 83/0 و 73/0 کیلوگرم بر مترمکعب بود. بر اساس نتایج، جهت حفظ تولید برنج ضمن صرفه‌جویی آب، استفاده از روش کنترل سطح ایستابی در عمق 5 سانتی‌متری سطح خاک توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and Simulation of Water Table Management Influence on Rice Yield and its Components Involving DSSAT Model

نویسندگان [English]

  • Mohsen Ramezani-Vasokolaei 1
  • Abdullah- Darzi Naftchali 2
  • Seyed Farhad Saber Ali 3
  • Shahryar Kazemi 4
1 Water Engineering Department, Sari Agricultural Sciences and Natural Resources University
3 Assistant Professor of Horticultural Science and Engineering, Educational Institute of Torbat Jam
4 Department of Agricultural Sciences, Payame Noor University, Iran
چکیده [English]

Simulation models are suitable tools for predicting the effects of different management scenarios and selecting the most appropriate solutions in agricultural production systems. In this study, after evaluating the efficiency of the DSSAT model, the effect of water table management on rice growth and yield was investigated. The required field experiments were performed under a randomized complete block design with four irrigation treatments and three replications during a rice growing season in a research farm at the Sari Agricultural Sciences and Natural Resources University. Irrigation treatments included conventional or flooding irrigation (control) with water height of 5 cm above the soil surface (I1), water table control at soil level (I2), water table control at 5 cm below soil surface (I3) and water table control at 15 cm below soil surface (I4). During rice growing season and at harvest, leaf area index, shoot weight, plant height, number of tillers, biological yield and grain yield were measured. The data of I1 treatment were used for calibration and the data of other treatments were used for validation of the model. In both calibration and validation processes, the DSSAT model showed a good performance for predicting phenological dates, leaf area index, biological yield and grain yield. In the calibration and validation stages, root mean square error (NRMSE) values were in the range of 0.7-7.6% and 1-7.6%, respectively, and Wilmot agreement index (d) values were in the range of 0.73-0.99 and 0.82-0.99, respectively. Effects of irrigation treatments were significantly different on plant height, number of tillers per hill, leaf area index, grain yield and biological yield. Among different treatments, the highest grain yield was 5584 kg ha-1, related to the control treatment. Grain yield in I2, I3 and I4 treatments was 4.7, 4.6 and 39.2% lower than that in the control treatment, respectively. Water use efficiency in I1, I2, I3 and I4 treatments was 0.48, 0.65, 0.83 and 0.73 kg m-3, respectively. Based on the results, in order to maintain rice production while saving water, it is recommended to control the water table at a depth of 5 cm below the soil surface.

کلیدواژه‌ها [English]

  • Flooding irrigation
  • Water Use Efficiency
  • Leaf area index
  • Water table management
 
ابراهیمی راد، ح.، ح. بابا زاده، ا. امیری و ح. صدقی. 1396. اثر مدیریت آبیاری و تراکم کشت بر عملکرد و بهره وری آب برنج رقم هاشمی. نشریه پژوهش آب در کشاورزی سال سی و یکم، شماره 4، ص 625-636.
امیری، ا. و م. رضایی. 1391. ارزیابی بیلان و بهره‌وری آب برنج در شرایط آبیاری تناوبی و کود نیتروژن. نشریه آبیاری و زهکشی ایران، سال ششم، شماره 4، ص 306-315.
امیری، ر.، ف.کاوه و ح. جهرمی. 1385. مدیریت آب در شالیزار. همایش ملی مدیریت شبکه‌های آبیاری و زهکشی،12 تا 14 اردیبهشت‌ماه، دانشگاه چمران اهواز، شماره4، ص 69-58.
رضایی، م.، م. معتمد، ع. یوسفی فلکدهی و ا. امیری. 1389. تغییرات مصرف آب در مدیریت‌های مختلف آبیاری و تأثیر آن بر میزان عملکرد ارقام مختلف برنج. نشریه آب‌وخاک،  سال هشتم، شماره 3، ص 565-573.
سالمی،ح و ع، ر. توکلی. 1386. افزایش بهره‌وری آب آبیاری ارقام برنج در اصفهان. مجله تحقیقات مهندسی کشاورزی، سال هشتم، شماره1،ص 61-74.
شخم گر، ی.، ع. درزی نفت چالی و س، ی. موسوی طغانی. 1398. ارزیابی تأثیر شیوه‌های آبیاری و سن بوته بر عملکرد و اجزای عملکرد برنج در نظام‌های رایج و بوم‌شناختی. نشریه آبیاری و زهکشی ایران، جلد سیزدهم، شماره 2، ص 389-399.
شیرازی، ح.، ع. بیابانی، ح. صبوری و م. نعیمی . 1396 . تأثیر مدیریت‌های مختلف آبیاری بر صفات مورفولوژیک و عملکرد ارقام برنج در گنبدکاووس. نشریه تنش‌های محیطی در علوم زراعی، سال دوازدهم، شماره 1، ص 165-179.
صالحی هیکویی، م.، ع. درزی نفت چالی، ع. شاهنظری و م. جعفری تلوکلایی .1396. بررسی اثر آبیاری در شالیزارهای مجهز به زهکشی زیرزمینی بر ارتفاع بوته، تعداد پنجه و عملکرد دانه برنج. فصلنامه مهندسی آبیاری و آب، سال بیست و هفتم، شماره 7، ص 107-118.
صداقت، ن.، ع. بیابانی، ح.صبوری، م. نصیری و ا. فلاح .1397. تأثیر روش‌های آبیاری و محلول‌پاشی عناصر غذایی بر عملکرد و اجزای عملکرد برنج رقم کشوری. نشریه تولید گیاهان زراعی دانشگاه کشاورزی و منابع طبیعی گرگان، سال یازدهم، شماره 4، ص 27-40.
صداقت ن.، ه، ا. پیر دشتی، ر. اسدی و س،ی. موسوی طغانی. 1393 . اثر روش‌های آبیاری بر بهره‌وری آب در برنج. نشریه پژوهش آب در کشاورزی، سال بیست و هشتم، شماره1، ص 1-9.
عرب زاده. ب.1392. مطالعه بهره‌وری آب درکشت نشایی برنج در ارقام طارم و شیرودی. گزارش نهایی طرح تحقیقات موسسه تحقیقات برنج کشور، سال چهارم، شماره 3، ص57-35.
عرب زاده، ب.1383. بررسی کم آبیاری تنظیم‌شده درکشت نشایی برنج رقم طارم. گزارش نهایی طرح تحقیقاتی. موسسه تحقیقات برنج کشور، سال ششم، شماره 5، ص96-85.
کسرائیان، ع.1392. کودها و استفاده از آن‌ها. (ترجمه) انتشارات دانشگاه آزاد اسلامی شیراز، ص96 .
میری، ح. ر.، و. نیکان و ع. باقری. 1391. تأثیر آبیاری تناوبی بر عملکرد، اجزای عملکرد و بهره‌وری آب درکشت مستقیم برنج در منطقه کازرون. مجله تولید و فرآوری محصولات زراعی و باغی، سال دوم، شماره 5، ص 26-13.
Ali, M.S, M.A Hasan, S. Sikder, M.R. Islam and H.M.R. Hafiz. 2013. Effect of seedling age and water management on the performance of Boro rice (Oryza sativa L.) variety BRRI Dhan28. The Agriculturists, 11(2): 28-37.
Arif, C., B.I. Setiawan, H.A. Sofiyuddin and L.M. Martief. 2013. Enhanced water use efficiency by intermittent irrigation for irrigated rice in Indonesia. Journal of Islamic Perspective on Science, Technology and Society, 1(1): 12-17.
Badshah, M. A., Y. Zou, M. Ibrahim and K. Wang. 2014. Yield and Tillering response of super hybride rice Liangyoupeijiu to tillage and establishment methods. The Crop Journal, 2(1): 79-86.
Bannayan, M., G. Hoogenboom. 2009. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research, 111(3): 290-302.
Boote K.J., J.W. Jones, G. Hoogenboom and G.G. Wilkerson. 1997. Evaluation of the CROPGRO-soybean model over a wide range of experiment, Pp. 113-133.
Carrijo, D.R., M.E. Lundy and B.A. Linquist. 2017. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 203: 173-180.
Darzi, A., F. Karandish and J. Simunek. 2018. Numerical modeling of soil water dynamics in subsurface drained paddies with midseason drainage or alternate wetting and drying management. Agricultural Water Management 197, 67-78.
Dass, A., S. Chandra, A. K. Choudhary, G. Singh, and S. Sudhishri. 2016. Influence of field re-ponding pattern and plant spacing on rice root-shoot characteristics, yield, and water productivity of two modern cultivars under SRI management in Indian Mollisols. Paddy Water Environ. 14(1): 45-59.
Dahal, K. R., and R.B. Khadka. 2012. Performance of rice with varied age of seedlings and planting geometry under system of rice intensification (SRI) ildvdn farmer’s field in Western Terai, Nepal. Nepal Journal of Science and Technology, 13(2): 1-6.
Deb, D., J. Lässig and M. Kloft. 2012. A critical assessmimportanceof seedling age in the system of rice intensification (SRI) in eastern India. Experimental agriculture, 48(3): 326-346.
Dong, N. M., K.K. Brandt, J. Sørensen, N.N. Hung, C.V. Hach, P.S. Tan and T. Dalsgaard. 2012. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biology and Biochemistry. 47: 166–174.
Duttarganvi, S., K. Tirupataiah, Y.K. Reddy, K. Sandhyrani, M.R. Kumar and K. Malamasuri. 2014. Yield and water productivity of rice under different cultivation practices and irrigation regime. International symposium on integrated water resources management (IWRM). Kozihkode, Kerala, India. 938-943.
FAO. 2012. Rice Production, available from http://www.faostat.org.
FAO. 2018. Fao statistical database, available at www.fao.org.
Gill, J. S., S.S. Walia and R.S. Gill .2014. Direct seeded rice an alternative rice establishment technique in north-west India – A review. International Journal of Advanced Research. 2 (3): 375-386.
Hoogenboom, G,. J.W. Jones, P.W. Wilkens, C.H. Porter, K.J. Boote, L.A. Hunt, U. Singh, J.I. Lizaso, J.W. White, O. Uryasev, R. Ogoshi, J. Koo, V. Shelia and G.Y. Tsuji. 2015. Decision support system for agro technology transfer (DSSAT) version 4.6 (www.DSSAT.net). DSSAT foundation, prosser, Washington.
Jeong, H., T. Jang C.S. Seong. 2014. Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater. Agric. Water Manage, 141:1-9.
Juan, L. Y., C. Xing, I. H. Shamsi, F. Ping and L. X. Yong. 2012. Effect of Irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil. Soil Science Society of China, 22(5): 661–672.
Katharine, R., P.S. Howell and I.C. Dodd. 2015. Alternate wetting and drying irrigation maintained rice yields despite half the irrigation volume, but is currently unlikely to be adopted by smallholder lowland rice farmers in Nepal. Food Energ Secur, 4(2):144-157.
Lamm, F.R, 2003. Advantages and disadvantages of subsurface drip irrigation. Www. Oznet. Ksu. Edu. Sdi. Reports. 2000.
Lin, S., H. Tao, K. Dittert, Y. Xu, X. Fan, Q. Shen and B. Sattelmacher. 2003. Saving water with the ground cover rice production system in China. In Technological and Institutional Innovations for Sustainable Rural Development. Conference on International Agricultural Research for Development, Gootingen Germany, 8-10 October.
Liu, L., T. Chen, Z. Wang, H. Zhang, J. Yang and J. Zhang. 2013. Combination of site–specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crop Research, 154: 226–235.
Mahmood, R., M. Meo, D.R. Legates, M.L. Morrissey. 2003. The CERES-Rice model-based estimates of potential monsoon season rainfed rice productivity in Bangladesh. The Professional Geographer, 55(2):259-273. DOI: 10.1111/0033-0124.5502013.
Roderick, M., G.R. Florencia, G.D.P. Rodriguez, R.M. Lampayan and B.A.M. Bouman,. 2011. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy. 36(2):280-288.
 Shanmugasundaram, B., Helen. 2015. Adoption of system of rice intensification under farmer participatory action research programme (FPARP). Indian Res. J. Ext. Edu, 15 (1): 114-117.
Soler, C.M.T., P.C. Sentelhas, and G. Hoogenboom. 2007. Application of the CSM- CERES-Maize model for planting data evaluation and yield forecasting for maize grown off-season in subtropical environment. European Journal Agronomy. 27: 165-177.
Tabbal, D.F., B.A.M. Bouman, S.I. Bhuiyan, E.B. Sibayan and M.A. Sattar. 2010. On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agricultural Water Management, 56(2): 93–112.
Tan, X., D. Shao, H.  Liu, F. Yang, C. Xiao and H. Yang. 2013. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ, 11: 1–15.
Thakur, A.K., R. K. Mohanty, D.U. Patil and A. Kumar. 2014. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy Water Environ, 12: 413-424.
Wailes,E.J and E.C. Chavez. 2012. International Rice baseline with deterministic and stochastic projections. University of Arkansas, department of agricultural economics and agribusiness, 2012-2021 (no. 123203).
Yao, F., J. Huang, K. Cui, L. Nie, J. Xiang, X. Liu, W. Wu, M. Chen and S. Peng. 2012. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Research, 126: 16-22.