استفاده از تکنیک‌های محاسبات نرم جهت برنامه‌ریزی تخصیص منابع آب در زمان خشکسالی

نویسندگان

1 کرمان- خیابان شهید مصطفی خمینی 6 -

2 هیات علمی/ دانشگاه تحصیلات تکمیلی کرمان

چکیده

بخش کشاورزی عمده مصرف کننده منابع آب در کشور می­باشد، لذا اتخاذ تصمیمات مناسب در برنامه­ریزی و تخصیص منابع آب در این بخش کمک شایانی در جهت مدیریت کارای این منابع می­کند. هدف تحقیق حاضر آنست تا با استفاده از ابزارهای محاسبات نرم همانند الگوریتم بهینه­سازی ازدحام ذرات (PSO) و الگوریتم ژنتیک (GA)، مدلسازی مقادیر رهاسازی بهینه از مخزن و برنامه­ریزی آبیاری در شبکه­های کشاورزی پایین­دست سد زاینده‌رود، تدوین گردد. در این راستا تقویم کشت محصولات، کل آ ب موجود و زمین قابل کشت در بخش کشاورزی و محدودیت­های نیاز آبی متغیر محصولات از جمله مهمترین قیود غیر خطی تحقیق حاضر می­باشند. نتایج حاکی از آن بود که مدلسازی یکپارچه PSO با توزیع بهتر کمبودهای آبی بین مراحل مختلف رشد محصولات، توانست سود سیستم را در مقایسه با مقادیر تخصیص به روش سنتی (ونش­بندی) به طور قابل توجهی افزایش دهد. همچنین با ملاحظه زمان رسیدن به همگرایی و نیز کل سود، مدل PSO عملکرد بهتری نسبت به GA داشته است. در نهایت استفاده از تکنیک­های محاسبات نرم در برنامه­ریزی آبیاری، می­تواند الگوهای موثری برای تخصیص منابع آب کشاورزی در مناطق خشک با منابع آب محدود فراهم کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Use of Soft Computing Techniques for Irrigation Scheduling during Drought Episode

نویسندگان [English]

  • Sedigheh Anvari 1
  • Esmat Rashedi 2
  • sedigheh Mohammadi 2
2 Faculty Member/Graduate University of Advanced Technology
چکیده [English]

Agricultural sector is the main water consumer in our country. So the appropriate decisions for irrigation scheduling and its optimal allocation is of great importance for an efficient water management. The aim of the present study is to employ some soft computing techniques, such as the particle swarm optimization (PSO) and genetic algorithm (GA), and to determine optimal irrigation scheduling as well as reservoir release for agricultural networks located at downstream of Zayandeh-Rud dam. In this regard, the crop calendar, total amount of available water as well as arable land in agricultural sector, the amount of water available at the beginning of water year and crop water requirements are the most important non-linear constraints of current research. The results showed the integrated PSO modeling with better distribution of water shortages among different crop growth stages could significantly increase the net profit of system while compared to those of traditional irrigation systems. Regarding the time of reaching the convergence as well as total attainable benefit, the PSO has slightly outperformed the GA. Consequently, application of soft computing techniques in irrigation scheduling will provide effective water allocation patterns to save more water in an arid region with limited water resources.

کلیدواژه‌ها [English]

  • : Irrigation scheduling
  • optimization
  • variable agricultural demand
  • Genetic Algorithm
  • Particle Swarm Optimization
بانک طرح­های توسعه منابع آب (1388)، شرکت مدیریت منابع آب ایران، دفتر برنامه­ریزی کلان آب و آبفا. شرکت سهامی مدیریت منابع آب ایران .
سرگزی، ع. قویدل م. (1396). برنامه ریزی و تخصیص بهینه منابع آب در بخش کشاورزی با استفاده از رهیافت برنامه‌ریزی فازی ( مطالعه موردی شهرستان صومعه سرا). مجله تحقیقات منابع آب ایران، دوره 13، شماره 2. صفحه 81-74.
قدمی، س. م.، قهرمان، ب.، شریفی، م. ب. و رجبی مشهدی، ح. (1388). بهینه­سازی بهره­برداری از سیستم­های چند مخزنی منابع آب با استفاده از الگوریتم ژنتیک. مجله تحقیقات منابع آب ایران. سال پنجم، شماره 2.
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998). FAO Irrigation and Drainage Paper No. 56, Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements). FAO, Water Resources, Development and Management Service, Rome, Italy.
Borg H, Grimes W. 1986. Depth development of roots with time: an empirical description. Transactions of the ASAE 29(1): 194–197.
Castillo O, Melin P, Pedrycz W, Kacprzyk J. 2014. Recent advances on hybrid approaches for designing intelligent systems, Part of the Studies in Computational Intelligence book series (SCI, volume 547), Springer. Tijuana, Mexico.
Doorenbos, J. and Kassam, AH. (1977). Yield response to water. FAO Irrigation and Drainage Paper No. 33, Rome: FAO.
Dudley, B. J., and Scott, B. W. (1993). Integrating irrigation water demand, supply, and delivery management in a stochastic environment. Water Resources Research, 29(9): 3093-3101.
 
FAO (2003). FAO’s Information System on Water and Agricultur. Available online at http:/www.fao.org.
Ghahraman, B. and A. R. Sepaskhah. (2002). Optimal allocation of water from a single purpose reservoir to an irrigation project with pre-determined multiple cropping pattern. Irrig. Sci. 21: 127-137.
Ghahraman, B. and Sepaskhah, A. R. (2004). Linear and Non-Linear Optimization Models for Allocation of a Limited Water Supply. Irrig. Drain. 53: 39-54.
Goldberg, D. D. (1998). Genetic algorithem in search, optimization and machine learning, Addison Wesley publishing compane Inc, 401.
Kennedy, J., and Eberhart, R. C. (1 995). Particle Swam Optimization; Roc. IEEE International Conference on Neural Networks (Path, Australia), IEEE Service Center, Piscataway, NJ, N: 1942-1948.
Khanjari Sadati, S. Speelman, S. Sabouhi, M., Gitizadeh, M. Ghahraman, B. (2014). Optimal Irrigation Water Allocation Using a Genetic Algorithm under Various Weather Conditions. Water, 6:3068-3084; doi: 10.3390/w6103068
Li, X., Huo, Z., Xu, B. (2017). Optimal Allocation Method of Irrigation Water from River and Lake by Considering the Field Water Cycle Process, Water, 9(911), DOI: 10.3390/w9120911.
Moghaddasi, M., Morid, S., Araghinejad, S. and Agha Alikhani, M. (2010). Assessment of irrigation water allocation based on optimization and equitable water reduction approaches to reduce agricultural drought losses: the 1999 droughtin the zayandeh rud irrigation system (Iran). Irrigation and drainage, 59(4): 377–387.
Paul, S., Sudhindra, N.P. and Kumar, D.N. (2000). Optimal irregiation allocation: A multilevel approach, ASCE: Journl of Irregiation and Drainage Engineering, 126: 149-154.
Reca, J., Roldan, J., Alcaide, M., Lopez, R. and Camacho, E. (2001). Optimisation model for water allocation in deficit irrigation systems, I. Description of the model. Agricultural water Management, 48: 103-116.
Vedula, S., and Mujumdar, P. P. (1992). Optimal reservoir operation for irrigation of multiple crops, Water Resour. Res., 28(1), 1–9.
Vedula. S and Mohan. S. (1990). Real-time multipurpose reservoir operation: a case study. Hydrological Sciences Journal. 35(4): 447-462.
Vedula, S. and Mujumdar, P. (2005). Water Resources Systems: Modelling Techniques and Analysis, Tata McGraw-Hill.
Yeh, J. Y. and Lin, W. S. (2007).Using simulation technique and genetic algorithm to improve the quality care of a hospital emergency department‖, Expert Systems with Applications, Vol. 32(4), pp. 1073-1083, 2007.
Yeh, W. (1985). Reservoir Management and Operations Models: A State-of-the-Art Review, Water Resource. Research, 21(12): 1797–1818.
Tripathi, P. K., Bandyopadhyay, S., & Pal, S. K. (2007). Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information sciences, 177(22), 5033-5049.