ارزیابی رتبه‌ای دو رویکرد مدل‌سازی داده‌مبناء و مفهومی فرآیند بارش- رواناب در مقیاس زمانی ماهانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 مهندس کنترل منابع آب در هیئت مدیره کنترل منابع آب ایالتی، ساکرامنتو، کالیفرنیا، امریکا،

چکیده

مدل‌سازی ماهانه فرآیند بارش- رواناب نقش مهمی در بهر‌ه‌برداری از سدها دارد. در مقاله حاضر کارایی سه مدل داده‌مبناء شبکه عصبی مصنوعی (ANN)، شبکه عصبی رگرسیون تعمیم‌یافته (GRNN) و K نزدیک‌ترین همسایگی (KNN) در مقایسه با مدل مفهومی IHACRES در مدل‌سازی ماهانه بارش- رواناب با داده‌های مشابه و ساختار بهینه مورد ارزیابی قرار گرفت. شبیه‌سازی جریان ماهانه ورودی به سد کرخه به عنوان مطالعه موردی انتخاب و از داده‌های مشاهده‌ای 32 ساله (1393-1361) دما و بارش ماهانه و جریان ماهانه ورودی به سد استفاده شد. با توجه به متفاوت بودن الگوهای بارش-رواناب در ماه‌های مختلف، دو نوع ارزیابی کلی و ماهانه از کارایی مدل‌ها با استفاده از روش رتبه‌دهی و بر مبنای سه شاخص ارزیابی نش- ساتکلیف (NSE)، جذر میانگین مربعات خطا (RMSE) و ضریب همبستگی (R) انجام شد. نتایج نشان داد که از هر دو روش ارزیابی مدل‌ها در مرحله صحت‌سنجی، دو مدل ANN و KNN به ترتیب دارای بیشترین و کم‌ترین کارایی در تخمین جریان ماهانه بودند. بر اساس ارزیابی کلی رتبه‌ای مدل‌ها، کارایی دو مدل  ANN(749/0 NSE= و 868/0R=) و IHACRES (699/0 NSE=و 842/0R=) با کسب 8 امتیاز مشابه بود و دو مدل GRNN (618/0 NSE=و 793/0R=) و KNN (601/0 NSE=و 777/0R=) با کارایی مشابه (5 امتیاز) در رتبه دوم قرار گرفتند. در حالیکه بر اساس روش ارزیابی رتبه‌ای ماهانه، دو مدل IHACRES و GRNN با کسب مجموع 38 امتیاز مساوی از سه شاخص ارزیابی خطا دارای کارایی مشابه بوده و کارایی آنها پس از مدل ANN با 48 امتیاز در مقام دوم قرار گرفت.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ranking Evaluation of Data-driven and Conceptual Modelling of Rainfall-Runoff Process in Monthly Time Scale

نویسندگان [English]

  • Fereshteh Modaresi 1
  • Kumars Ebrahimi 2
  • Shahab Araghinejad 3
1 Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad.
2 Irrigation and Reclamation Engineering Department University of Tehran
3 Water Resource Control Engineer at State Water Resources Control Board, Sacramento, California, USA, Shahab.Araghinejad@stantec.com
چکیده [English]

Rainfall-runoff monthly modelling process plays an important role in dams’ operation. Herein the performances of three data-based models including Artificial Neural Network (ANN), Generalized Regression Neural Network (GRNN) and K-Nearest Neighbor (KNN) are compared in tandem with IHACRES conceptual model, while they were applied with similar data, and optimal structures. Simulation of monthly inflow to Karkheh reservoir, Iran, was considered as the case study, and 32-year data (1982-2014) of monthly temperature and precipitation belong to the upper sub-basin of the dam, and monthly inflow to the reservoir were used. With respect to the different rainfall-runoff patterns in different months, the models assessed in a general and monthly manners using a rating method based on performance criteria including: Nash-Sutcliff Efficiency (NSE), Root Mean Square Error (RMSE) and Correlation Coefficient(R). Results showed that both model evaluation procedure in validation phase, ANN and KNN models have the highest and lowest efficiency in monthly streamflow forecasting, respectively. Based on the rating general evaluation the performance of ANN (NSE= 0.749, R= 0.868) and IHACRES (NSE= 0.699, R= 0.842) are similar with a score of 8 while the GRNN (NSE= 0.618, R= 0.793) and KNN (NSE= 0.601, R= 0.777) models with similar performance (score 5) were ranked in the second order. However, in accordance with rating monthly assessment of the models, the performance of GRNN was similar to IHACRES with the total score of 38 based on three criteria while they were ranked in the second order after ANN model with score 48.

کلیدواژه‌ها [English]

  • : Neural Networks
  • IHACRES
  • Karkheh
  • KNN
  • Ranking method
رزاقیان، ه.، شاهدی، ک.و حبیب نژاد روشن، م. 1395. ارزیابی اثر تغییراقلیم بر رواناب حوضه آبریز بابلرود با استفاده از مدل IHACRES. مهندسی آبیاری و آب ایران، 7 (2): 159-172.
زندی دره غریبی، ف.، خورسندی کوهانستانی، ز.، مزین، م. و آرمان، ن. 1396 مقایسه عملکرد دو مدل IHACRES و GR2M در شبیه‌سازی جریان ماهانه حوضه آبریز دره تخت. علوم و مهندسی آبیاری.40 (2): 147-158.
فدایی کرمانی، ا.، بارانی، غ.ع.، قائینی حصاروئیه، م. 1396. کاربرد الگوریتم نزدیک‌ترین همسایگی در پیش‌بینی میزان آسیب‌پذیری سرریز سدها در اثر پدیده کاویتاسیون. مهندسی آبیاری و آب ایران، 7 (4): 15-25.
قربانی، خ.، سهرابیان، ا. و سالاری‌جزی، م. 1395. ارزیابی روش‌های هیدرولوژیکی و داده‌کاوی در شبیه‌سازی و پیش‌بینی دبی جریان ماهانه (مطالعه موردی: ایستگاه هیدرومتری ارازکوسه). پژوهش‌های حفاظت آب و خاک. 23 (1): 203-217.
گودرزی، م.‌ر.، ذهبیون، ب.، مساح بوانی، ع.‌ر. و کمال، ع.‌ر. 1391. مقایسه عملکرد سه مدل هیدرولوژیکی SWAT، IHACRES و SIMHYD در شبیه‌سازی رواناب حوضه قره‌سو. مدیریت آب و آبیاری. 2(1): 25-40. 
مدرسی، ف.، عراقی‌نژاد، ش. و ابراهیمی، ک. 1395. توسعه سامانه پیش‌بینی بلندمدت هیدرولوژیکی بر اساس ترکیب مدل‌های داده‌مبنا. دانشگاه تهران. تهران. رساله دکتری.
یعقوبی، م. و مساح بوانی، ع. .1393. تحلیل حساسیت و مقایسه عملکرد سه مدل مفهومی HBV، IHACRES و HEC-HMS در شبیه‌سازی بارش- رواناب پیوسته در حوضه‌های نیمه خشک (بررسی موردی: حوضه اعظم هرات- یزد). فیزیک زمین و فضا. 40 (2): 153- 172.
Araghinejad, S. 2014. Data-Driven Modeling: Using MATLAB in Water Resources and Environmental Engineering. 1st Ed. Water Science and Technology Library, Springer, Volume (67), 265p.
Cigizoglu, H. K. and M. Alp. 2004. Rainfall-runoff modeling using three neural network methods. Artificial Intelligence and Soft Computing, 3070: 166-171.
Cigizoglu, H. K. 2005. Generalized regression neural network in monthly flow forecasting. Civil Engineering and Environmental Systems, ‌22(2): 71-81.
Diaz-Ramirez, J. N., W. H. McAnally, J. L. Martin. 2011. Analysis of hydrological processes applying the HSPF model in selected watersheds in Alabama, Mississippi, and Puerto Rico. Applied Engineering in Agriculture, 27 (6): 937-954. 
Ghanbarpour, M. R., M. Amiri, M. Zarei and Z. Darvari. 2012. Comparison of streamflow predicted in a forest watershed using different modeling procedures: ARMA, ANN, SWRRB, and IHACRES models. River Basin Management, 10 (3): 281-292.
IHACRES user guide, Version 1.02, September 2003.
Kişi, Ö. 2008. River flow forecasting and estimation using different artificial neural network techniques. Hydrology Research, 39(1): 27–40.
Modaresi, F., S. Araghinejad and K. Ebrahimi. 2018. A comparative assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K- Nearest Neighbor Regression for monthly streamflow forecasting in linear and nonlinear conditions. Water Resources Management, 32(1):243-258.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, T. L. Veith. 2007. Model evaluation guidelines for systemic quantification of accuracy in watershed simulations. Transactions of ASABE, 50(3): 885-900.
Nilsson, P., C. B. Uvo, R. Berndtsson. 2006. Monthly runoff simulation: comparing and combining conceptual and neural network models. Hydrology, 321: 344–363.
Sadeghi Loyeh, N. and M. Rahimi Jamnani. 2017. Comparison of different rainfall-runoff models performance: A case study of Liqvan catchment, Iran. European Water, 57: 315-322.
Sammut, C. and G. I. Webb. 2017. Encyclopedia of machine learning and data mining. Springer. doi: 10.1007/978-1-4899-7687-1. 1744p.
Tokar, A. S. and M. Markus. 2000. Precipitation-runoff modeling using artificial neural networks and conceptual models. Hydrologic Engineering, 5 (2): 156–161.