حذف رنگ دایرکت بلو از محلول‌های آبی با استفاده از پلیمر پلی آکریل آمید سولفونه شده (PAM-SO3)به عنوان یک جاذب جدید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

2 دانشیار گروه آبیاری، دانشکده کشاورزی، دانشگاه بوعلی سینا.

3 باشگاه پژوهشگران جوان و نخبگان، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران.

چکیده

ورود آلاینده‌های زیست محیطی به منابع آب اثرات زیان‌باری بر سلامت انسان و محیط زیست دارد. در سالیان اخیر روش‌­های جذب سطحی با استفاده از جاذب­های سنتزی جهت حذف فلزات سنگین و رنگ­های صنعتی استفاده فراوان پیدا کرده است. پلیمر پلی­آکریل­آمید سولفونه شده (PAM-SO3)  به عنوان جاذب سنتزی می­تواند در حذف رنگ از محیط­های آبی مؤثر باشد. هدف از کار تحقیقاتی حاضرحذف رنگ دایرکت بلو به وسیله PAM-SO3 به ‌عنوان جاذب سنتزی از آب‌­های آلوده در شرایط آزمایشگاهی می­باشد. در این تحقیق، اثر متغیرهای pH، زمان تماس، مقدار جاذب و غلظت اولیه در کارایی حذف رنگ دایرکت بلو از آب­های آلوده مورد بررسی قرار گرفت. داده­های به دست آمده با ایزوترم­های لانگمیر، فرندلیچ و تمکین و سینتیک­های واکنش شبه درجه اول، شبه درجه دوم، انتشار درون ذره­ای و الوویچ برازش داده شدند. برای جاذب پلی آکریل آمین اصلاح شده مدل لانگمیر تطابق بیشتری با داده‌­های تجربی داشت و با استفاده از این مدل ماکزیمم ظرفیت جذب mg g-1 5000 برای جاذب به دست آمد. همچنین نتایج نشان دادند که سینتیک جذب از معادله شبه درجه دوم برای آلاینده دایرکت بلو مطابقت بیشتری دارد (99/0 R2=). همچنین یافته­های پژوهش نشان داد که بهترین شرایط به منظور حذف رنگ دایرکت بلو در مقادیر pH برابر 2، زمان 45 دقیقه، مقدار جاذب 014/0 گرم و غلظت 800 میلی‌گرم بر لیتر می­باشد. نتایج حاصل نشان می‌دهد که جاذب اصلاح شده به دلیل داشتن سطح موثر بالا و داشتن گروه­های عاملی سولفونه (SO3)، ماکزیمم ظرفیت جذب بالا و سینتیک سریع واکنش، جاذبی موثر در حذف آلاینده رنگ دایرکت بلو از محیط­های آبی می­باشد. لذا استفاده از این جاذب به منظور حذف رنگ دایرکت  بلو از محیط­های آبی بخصوص پساب صنایع نساجی پیشنهاد می­گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal Direct Blue Dye from Aqueous Solution Using Sulfonated Polyacrylamide Polymer (PAM-SO3) As a Novel Adsorbent

نویسندگان [English]

  • Seyed Yaghoub Karimi 1
  • safar marofi 2
  • Ali Mouhamad Zare 3
1 Science and water engineering department, Faculty of agriculture, Bu Ali sina Hamedan
3 Chemistry Department, Islamic Azad University, Marvdasht Branch, Marvdasht, Iran.
چکیده [English]

Entering environmental pollutants into water resources have harmful effects on human health and environment. In recent years, adsorption methods using adsorbents to remove contaminants from water resources have been abundant. Solfounate  and Pentaaza. sulfonated polyacrylamide polymer (PAM-SO3) as a novel adsorbent can be effective for removal of chemical pollutants of the aquatic solution. The purpose of this research is removal of Direct Blue using PAM-SO3 as an adsorbent from polluted water in vitro. The effects of variables such as pH, contact time, initial concentration, adsorbent amount were observed to reach best adsorption conditions. Isotherms of Langmuir, Freundlich and Temkin have been fitted with the data of experiment. In addition, kinetics of pseudo- first order, pseudo- second order, intra-particle diffusion and Elovich were also fitted with the [1]experiment data. Also, the results indicated that the best conditions for removal of Direct Blue dye were: pH= 2, removing time= 45 minutes, adsorbent dosage= 0.014 g and initial concentration of dye= 800 mg L-1. For PAM-SO3, Langmuir isotherms showed a good agreement with the experimental data. Using this model to maximize absorption capacity of 5000 (mg g-1) for PAM-SO3. Absorption rates showed a quick responses which was less than one hours. Based on these results, the adsorption kinetics of pseudo- second- order was more consistent with the experimental data (R2=0.99). The results show that PAM-SO3 absorbent is effective in removing Direct Blue contaminants from the aqueous solutions due to its high surface area and rapid kinetics of the reactions. Therefore, PAM-SO3 is recommended as an efficient adsorbent to remove Direct Blue from aqueous solutions.
 
 

کلیدواژه‌ها [English]

  • Adsorption
  • Isotherms Models
  • Kinetics models
  • Direct Blue
رضایی، ک. ، پورباقری، ه. خویی جوانشیر، آ. جعفرزاده، و. "به کارگیری روش­های تصفیه فیزیکی و زیستی برای حذف سموم کشاورزی دیازینون و مالاتیون در آب، شیلات، مجله منابع طبیعی ایران، " دوره 70 ، شماره 3. سال 1396 .
ایران پور، م. فدوی، ع. زارع،  م.ع. عمادی، م. "حذف رنگ از محلول­های آبی توسط پنتا آزا تترا اتیلن ساپورت شده بر روی پلی اکریل آمید به عنوان یک جاذب جدید: بررسی سینتیک و ایزوترم جذبی،" مجله مواد نوین، جلد 8، شماره 1. سال 1396.
شکوهی، ر. تقوی، م. جوشنی، غلامحسین. جعفری، سیدجواد. کاشیتراش اصفهانی، زهرا. "مطالعه تعادل و سینتیک جذب رنگ دایرکت بلو 17 توسط گل قرمز از محیطهای آبی". مجله بهداشت و توسعه. سال سوم/شماره 1 /بهار1393.
سندی، ا. میرزایی، ر. حذف رنگ دایرکت یلو 21 با استفاده از پودر سیمان هیدراته از محلول آبی. مجله بهداشت و توسعه. سال هفتم/شماره 1 /بهار 1397.
 
Aharoni, C. and M. Ungarish. 1977. Kinetics of activated chemisorption. Part 2. Theoretical models. Journal of the Chemical Society Faraday Transactions. 73: 456.
Al-Ghouti MA, Khraisheh MAM, Allen SJ , Ahmad MN. 2003. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage.;69(3):229-38.
Arsène, H. Yonli., H. A. Jean. K. 2014. α-Endosulfan Removal from Water by Adsorption over Natural Clays from Burkina Faso: An Isothermal Study", Journal of Materials Science and Chemical Engineer. Vol 2, No. 11.
Azouaou, N. Sadaoui,Z. Djaafri,A. Mokaddem,H. 2010. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics", J. of Hazard. Mater., 184, 126-134.
Biglari, H. Javan, N. Khosravi, R. Zarei, A.  2016. Direct Blue 71 Removal from Aqueous Solutions by Adsorption on Pistachio Hull Waste: Equilibrium, Kinetic and Thermodynamic Studies. Iranian Journal of Health Sciences. 4(2): 55-70.
Bulut, Y. Baysal, Z. 2006. Removal of Pb (II) from wastewater using wheat bran. Journal of environmental management", 78(2), 107-113,
Choy, K. K. H., G. McKay, and J. F. Porter. 1999. Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recycl. 27: 57-71.
Deepika, ,D. K. Anil, D. 2014. Efficacy of various biosorbents for removal of endosulfan from water environment", Volume 6, Issue 3.
Emadi M, Zare M.A. Separating Fuchsin from the Contaminated Water with the Application of Rice Crust as a Low- Cost Bioactive Absorber. J of Water Res Eng 2010; 4.
El Nemr, A. Ola, A. El-Sikaily, A. Khaled, A. 2009. Removal of Direct blue-86 From Aqueous Solution by New Activated Carbon Developed From Orange Peel. J Hazard Mater.  15;161(1):102-10. doi: 10.1016/j.jhazmat.2008.03.060. 
Finch, CA. "Specialty polymers", New York, Wiley,
Freundlich, H. M. F. 1906. Over the adsorption in solution. J. Phys. Chem. 57: 385-470.
Friedman, M. Savage.L.J. 1947. Planning Experiments Seeking Maxima, in Techniques of Statistical Analysis", eds. C. Eisenhart, M. W. Hastay, and W. A. Wallis, New York, McGraw-Hill, pp. 365-372.
Ghaedi,M. Khajesharifi,H. Yadkuri,A. Roosta, H. M. Sahraei,R. Daneshfar,A. 2012. Cadmium hydroxide nanowire loaded on activated carbon as efficient adsorbent for removal of Bromocresol Green, Spectrochimica Acta Part A 86. 62–68.
Golkari M, Ghaneian M, Ehrampoush M. 2015. Dehvari M. Investigation of Russian Knapweed flower powder efficiency in removal of reactive Red 198 dye from textile synthetic wastewater. Toloo-e-behdasht; 13(5):92-103. Persian
Gulnaz, O. Sahmurova, A.  Kama, S. 2011. Removal of Reactive Red 198 from aqueous solution by Potamogeton crispus", Chemical Engineering Journal, 174(2–3), 579-8.
Ho, Y McKay.S. G. 1998. Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Prot. 76 183–191.
Ho, Y. S. McKay,G. Trans. J. 1999. Chem. E. 77. 165.
Koner,S. Kumar Saha, B. Kumar,R. Adak,A. 2001. Int. J. Curr. Res. 33. 128–133.
Lagergren, S. 1898. Zur theorie der sogenennten adsorption geloster stoffe, Kungliga. Svenska vetenskademiens, Handlingar, 24, 1–39.
Lagergren, S. 2017. Zur  Theorie der sogenannten Adsorption geloster Stoffe K. Sven. Vetenskapsakad. Handl. 24. 1–39.
Langmuir, I. 1918. 1898Adsorption of gases on plain surfaces of glass mica platinum. J. Am.Chem. Soc. 40: 136-403.
Lu CS, Chen CC, Mai FD, Li HK. 2009. Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis. J Hazard Mater, 165(1- 3): 306-16. 2. Merzouk.
Mckay, G. Ho, Y.S. 1999. Pseudo-second order model for sorption processes", Biochem, 34, 451–465.
Mousavi SA, Khashij M, Shahbazi P. 2016. Adsorption Isotherm Study and Factor Affected on Methylene Blue Decolorization using Activated Carbon Powder Prepared Grapevine Leaf. J Saf Promot Inj Prev.;3(4):249-56. [In persian]
Rabia,R. Tariq,M. Jamil,A. Muhammad,S. Umer,S. Z Waheed,. Furqan,A. 2011. J. Chem. Soc. Pak. 33. 228-232.
Saha, A. Gajbhiye,V. Suman, T. K. Rajesh, G. K. 2014. Rakesh Simultaneous Removal of Pesticides from Water by Rice Husk Ash: Batch and Column Studies. Volume 86. Number 11. pp. 2176-2185,
Shen, C. Wen, Y. Kang, X. Liu, W. 1982. Chemical Engineering Journal", 166:474, 2011.
Uddin M, Sultana Y, Islam M. 2016. Nano-sized SnO2 Photocatalysts: Synthesis, Characterization and Their Application for the Degradation of Methylene Blue Dye. JSR.;8(3):399-411.
Vinod, K. Imran, A. 2008. Removal of Endosulfan and Methoxychlor from Water on Carbon Slurry. Environ. Sci. Technol. 42 (3), pp 766–770.
Weber, W.J. Morris, J.C. 1963. Kinetics of adsorption on carbon fromsolution, J. Santi. Eng. Div. ASCE, 89 (SA2), 31–59,
Zare, M. A. Husain, S. W. 2017. Tehrani, P. A. Azar, “Pentaazatetraethylene supported polyacrylamide (PAA-N5) as a novel adsorbent for the efficient removal of industrial dyes from aqueous solutions: adsorption isotherms and kinetics", Monatsh Chem 148, 191–197.
Zare, M. A. Husain, S. W. Tehrani, M. S. Azar, P. A. 2017. Pentaazatetraethylene supported polyacrylamide (PAA-N5) as a novel adsorbent for the efficient removal of industrial dyes from aqueous solutions: adsorption isotherms and kinetics, Monatsh Chem 148, 191–197.
Zazouli, MA. Yousefi, Z. Cherati, aY. Tabarinia,H. Tabarinia, F. BA. Adergani, 2014. Evaluation of LCysteine Functionalized Single-Walled Carbon Nanotubes on Mercury Removal from Aqueous Solutions" J Mazand Univ Med Sci; 24(109):10-21.
Zheng, H. Han, L. Ma,H. Zheng,Y. Zhang,H. Liu, D. 2008. .Liang Adsorption characteristics of ammonium ion by zeolite 13X. Journal of Hazardous Materials 158(2), 577–584.