Assessment Rapid Urban Inundation Method Based on Urban Terrain: Depth, surface and volume of inundation

Document Type : Original Article

Authors

1 Soil Conservation and Watershed Management Research Institute, Semnan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Semnan, Iran.

2 Professor of Sari University of Agricultural Science and Natural Resources.Dept. of Watershed Management

3 Assistance Professor, College of Natural Resources, Sari Agricultural Science and Natural Resources University.

Abstract

Storm-inundation models based on hydrology and hydrodynamics require a large amount of input data (detailed terrain, sewer system and land use data). In this paper, in order to determine inundation conditions quickly with only a few usually available input data is proposed an urban storm-inundation simulation method (USISM) based on Geographic Information System (GIS). The USISM is a simplified method of distributed hydrological model based on DEM, in this method depressions in terrain are regarded as the basic inundated area. The amount of water that can be stored in a depression indicates the final inundation distribution. The runoff and maximum storage volume for each depression and the flow direction between these depressions are all considered in the final inundation simulation. The SCS method is used to calculate storm runoff and a water balance equation is used to calculate the water storage in each depression. The result shows that in all four-storm event, the average relative depth errors of depth in all inundation sites are less than 20%, while the average relative errors of area and volume are more than 60% Therefore, the USISM method has a higher ability to simulate the final depth of inundation than the surface and volume of inundation. The result reveals that the USISM method could find the inundation locations in the Damghan Urban Watershed and calculate inundation depth and area quickly and therefore display a significant role in the management of the urban crisis.

Keywords

Main Subjects


یوسفی مبرهن, ا, سلیمانی, ک, وهاب زاده, ق. (1395). شبیه‌سازی رگبار- آب‌گرفتگی مبتنی بر سامانه اطلاعات جغرافیایی در حوضه شهری دامغان. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران, 7(1), 39-26.
یوسفی مبرهن, ا, سلیمانی, ک, وهاب زاده, ق. (1399). اثر تغییرات کاربری اراضی بر وضعیت آب‌گرفتگی شهری با روش USISM مطالعه موردی: حوزه شهری دامغان. نشریه علمی ترویجی مدیریت اراضی، 8(2), 239-251.
 
Apel, H., G. T. Aronica, H. Kreibich and A. H. Thieken. 2009. Flood risk analyses–how detailed do we need to be? Nat. Hazards 49, 79–98.
Apirumanekul, C., 2001. Modeling of Urban Flooding in Dhaka City. Master Thesis No. WM-00-13, Asian Institute of Technology, Bangkok.
Bates, P. D and A. P. J De Roo. 2000. A simple raster-based model for flood inundation simulation. J. Hydrol. 236 (1): 54–77.
Bonta, J. V. 2004. Development and utility of Huff curves for disaggregating precipitation amounts. Appl. Eng. Agric. 20 (5): 641–653.
Chen, J., A. A. Hill and L. D. Urbano. 2009. A GIS-based model for urban flood inundation. J. Hydrol. 373, 184–193.
Cheng, X.T. 2010. Urban water disasters and strategy of comprehensive control of water disaster. J. Catastrophol. 25 (s): 10–15.
CH2M HILL, 2013. ISIS FAST. <http://www.isisuser.com/isis/isisfast.asp>.
Dottori, F and E. Todini. 2011. Developments of a flood inundation model based on the cellular. : Testing different methods to improve model performance. Phys. Chem. Earth Parts ABC 36: 266–280.
Fewtrell, J. T., A. Duncan, C. C. Sampson, J. C. Neal, and P. D. Bates. 2011. Benchmrking urban flood models of varying complexity and scale using higt resolution terrestrial LIDAR data. Physics and Chemistry of the Earth. In press. DOI: 10. 10161j. pce. 2010. 12. 011.
Gallo, E. L., P. D. Brooks, K. A. Lohse and J. E. T. Mclain. 2013. Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban. Catchments. J. Hydrol. 485: 37–53.
Ghimire, B., A. S. Chen, M. Guidolin, E. C. Keedwell, S. Djordjevic and D. A. Savic´. 2013. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. J. Hydro inform. 15 (3): 676–686.
Gouldby, B., P. Sayers, J. Mulet-Marti, M. A. A. M. Hassan and D. Benwell. 2008. A methodology for regional-scale flood risk assessment. Proc. ICE-Water Manage. 161 (3): 169–182.
Hellweger, R. 1996. AGREE.aml. Center for Research in Water Resources, the University of Texas at Austin, Austin, TX.
Hsu, M. H., S. H. Chen, and T. J. Chang. 2000. Inundation simulation for urban drainage basin with storm drainage system. J. Hydrol. 234: 21–37.
Jang, S., M. Cho and J. Yoon. 2007. Using SWMM as s tool for hydrologic impact assessment. Desalination 212: 344–356.
Jokic, D. and D. Maidment. 2004. Terrain analysis for urban storm water modeling. Hydrological Processes. (5): 115-124.
Krupka, M., S. Wallis, S. Pender and S. Neélz. 2007. Some practical aspects of flood inundation modelling, Transport phenomena in hydraulics, Publications of the Institute of Geophysics, Polish Academy of Sciences, E-7 (401): 129–135.
 Lhomme, J., P. Sayers, B. Gouldby, P. Samuels, M. Wills and J. Mulet-Marti. 2008. Recent Development and Application of a Rapid Flood Spreading Model, River Flow 2008, September. <http://eprints.hrwallingford.co.uk/223/1/HRPP361-Recent_development_and_application_of_a _rapid_flood_spreading_method.pdf>.
Liu, A., P. Egodawtta, A. Guan and A. Goonetilleke. 2013. Influnce of rainfall and catchment characteristics on urban stormwater quality. Scince of the Total Enviroment, 444: 255-262.
Liu, A., P. Egodawtta, A. Guan and A. Goonetilleke. 2013. Influnce of rainfall and catchment characteristics on urban stormwater quality. Scince of the Total Enviroment, 444: 255-262.
Deltares, 2017. SOBEK Suite.
Maidment, D. 1996. GIS and hydrological modelling: an assessment of progress. In: Third International Conference on GIS and Environmental Modelling, Santa Fe, NM, 20–25 January, 1996.
Meesuk, V., Z. Voinovich, A. E. Mynett and A. F. Abdullah. 2015. Urban flood modelling combining top-view LiDAR data with ground-view SfM observations. A. in Water Resources. 75: 105–117.
Miller, D.J., H. Kim, R. T. Kjeldsen, J. Packman, S. Grebby and R. Dearden. 2014. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover.  Journal of Hydrology, 515: 59–70.
Naulin, J.-P., O. Payrastre and E. Gaume. 2014. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France. J. Hydrol. 486: 88–99.
Néelz, S., Pender, G., 2013. Benchmarking the latest generation of 2D hydraulic modelling packages. SC120002, Environment Agency, Environment Agency.
Sharifian, R. A., A. Roshan, m. Afalatoni, A. Jahadi and M. Zolghadr. 2010. Uncertainty and sensitivity analysis of SWMM model in computation of manhole water depth and sub catchment peak flood. J. procedia social and bihavioral scinces. 2: 7739-7740.
Teng, J. et al., 2017. Flood inundation modelling: A review of methods, recent advances and Uncertainty analysis. Environmental Modelling & Software, 90: 201-216.
Wei, O.Y., B. B. Guo and F.H. Hao. 2012. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing. J. Environ. Manage. 113: 467–473.
Woodward, D.E., R. H. Hawkins, R. Jiang, A. T. Hjelmfelt, J. A Van Mullem and Q. D. Quan. 2003. Runoff curve number method: examination of the initial abstraction Ratio. In: Proc. ASCE Conf. Proc., Philadelphia, PA, vol. 118: p. 308.
XPSolutions, 2017. Complete Stormwater, Sewer and Floodplain Model.
Yan, J., Y. Zhang, J. Zhang and X. Yang. 2011. The method of urban rain- flood utilization based on environmental protection. Energy procedia. 5: 403-407.
Yousefi Mibarhan, E and E. Karimi Sangchini. 2021. Continuous Rainfall-Runoff Modeling Using HMS-SMA with Emphasis on the Different Calibration Scale. Journal of Chinese Soil and Water Conservation, 52 (2): 112-119.
Zhang, SH., Pan, B. 2014. An urban storm-inundation simulation method based on GIS. Journal of Hydrology, 517, 260–268.
Zhang, S.H., T. W. Wang and B. H. Zhao. 2014a. Calculation and visualization of flood inundation based on a topographic triangle network. J. Hydrol. 509: 406–415.
Zhang, S.H., B. H. Zhao and Eho. D. E. 2014b. Watershed characteristics extraction and subsequent terrain analysis based on digital elevation model in flat region. J. Hydrol. Eng.
Zhao, D. Q., J. N. Chen and Q. Y Tong. 2008. Construction of SWMM urban drainage network model based on GIS. China Water Wastewater 24 (7): 88–91.