Investigation of Methods for Determining the Regional Skewness Coefficient of the Maximum Discharge in East Azarbaijan province

Document Type : Original Article

Authors

1 Urmia university, Water Engineering Dept.

2 Urmia University

3 University of Agricultural Sciences and Natural Resources Sari

Abstract

To determine the flow rate with different return periods, it is necessary to use the skewness coefficient with acceptable precision. Estimation of population skewness in different regions is improved by different methods such as weighted skewness and generalized skewness. The main objective of the present research is to determine the coefficients of skewness using different methods and present the best method for determining the mentioned coefficients in East Azerbaijan, Iran. East Azerbaijan has three different hydrologic regions. The north of the province is a part of Aras catchment area, the center of the province is a part of Urmia lake watershed and a part of the south of the province is a part of Sefidrood catchment area. In this research, different generalized skewness coefficients methods were used. In the present study, the generalized skewness coefficients were estimated using four methods including generalized skewness coefficient without considering hydrological regions, generalized skewness coefficient with accounting hydrological regions, unbiased skewness coefficient and weighted skewness coefficient for three hydrological regions and 62 observed stations during studied period. Based on the obtained results and on the basis of the analysis of RMSE values for different methods, the method of weighting skewness coefficient can be suggested as the selected method in East Azerbaijan with an average value of 0.104. Also, the results of calculating the Nash-Shutcliffe and the square of the mean squares of relative error coefficients showed that the weighting method is the best method for calculating the skewness coefficient.

Keywords

Main Subjects


رضییی, ط. 1396. منطقه بندی اقلیمی ایران به روش کوپن-گایگر و بررسی جابه جایی مناطق اقلیمی کشور در سده بیستم. مجله فیزیک زمین و فضا, 43(2), 419-439.
سازمان هواشناسی ایران. اقلیم استان آذربایجان شرقی. http://www.irimo.ir/far/services/climate/793‎.
طهماسبی، پور ن., شریفی، ف., مهدوی، م., پزشک، ح. 1386. منطقه ای کردن برآورد سیل در تعدادی از زیرحوزه های کرخه با استفاده از چولگی تعمیم یافته. منابع طبیعی شماره ۷۴.
کرمی، م.، تلوری، ع.ر.، سمیعی، م. 1391. برآورد دبی حداکثر لحظه‌ای با استفاده از ضریب چولگی تعمیمی. هشتمین همایش علوم و مهندسی آبخیزداری.
Atiem I., and Harmancioglu N. 2006. Assessment of Regional Floods Using L-Moments Approach: The Case of the River Nile. Water Resources Management, 20:723-747.
Benson, M. A., & Matalas, N. C. 1967. Synthetic hydrology based on regional statistical parameters. Water Resources Research, 3(4), 931-935.
Fill, H. D., & Stedinger, J. R. 1998. Using regional regression within index flood procedures and an empirical Bayesian estimator. Journal of Hydrology, 210(1-4), 128-145.
Gaume, E., Gaál, L., Viglione, A., Szolgay, J., Kohnová, S., & Blöschl, G. 2010. Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. Journal of hydrology, 394(1-2), 101-117.
Gaume, E., Gaál, L., Viglione, A., Szolgay, J., Kohnová, S., & Blöschl, G. 2010. Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. Journal of hydrology, 394(1-2), 101-117.
Greis, N. P., & Wood, E. F. 1981. Regional flood frequency estimation and network design. Water Resources Research, 17(4), 1167-1177.
Greis, N. P., & Wood, E. F. 1981. Regional flood frequency estimation and network design. Water Resources Research, 17(4), 1167-1177.
Griffis, V. W., & Stedinger, J. R. 2009. Log-Pearson type 3 distribution and its application in flood frequency analysis. III: Sample skew and weighted skew estimators. Journal of Hydrologic Engineering, 14(2), 121-130.
Gruber, A. M., & Stedinger, J. R. 2008. Models of LP3 regional skew, data selection, and Bayesian GLS regression. In World Environmental and Water Resources Congress 2008: Ahupua'A (pp. 1-10).
Haddad, K., & Rahman, A. 2012. Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework–Quantile Regression vs. Parameter Regression Technique. Journal of Hydrology, 430, 142-161.
Halbert, K., Nguyen, C. C., Payrastre, O., & Gaume, E. 2016. Reducing uncertainty in flood frequency analyses: A comparison of local and regional approaches involving information on extreme historical floods. Journal of Hydrology, 541, 90-98.
Hardison, C. H. 1974. Generalized skew coefficients of annual floods in the United States and their application. Water Resources Research, 10(4), 745-752.
Hodgkins, G., & Martin, G. R. 2003. Estimating the Magnitude of Peak Flows for Streams in Kentucky for Selected Recurrence Levels (Vol. 3, No. 4180). US Department of Interior, US Geological Survey.
Hosking, J. R. M., & Wallis, J. R. 1993. Some statistics useful in regional frequency analysis. Water resources research, 29(2), 271-281.
Hoskins, J. R. M., & Wallis, J. R. 1997. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University.
Interagency Advisory Committee on Water Data (IACWD) .1982. Guidelines for determining flood flow frequency, Bull. 17B, 28 pp., Hydrol.Subcomm., Washington, D. C.
Jennings, M. E., W. O. Thomas Jr., and H. C. Riggs .1994. Nationwide summary of U.S. Geological Survey regional regression estimates for estimating magnitude and frequency of floods for ungaged sites, U.S. Geol. Surv. Water Resour. Invest. Rep., 94-4002.
Kuczera, G. 1982. Combining site‐specific and regional information: An empirical Bayes approach. Water Resources Research, 18(2), 306-314.
Madsen, H., & Rosbjerg, D. 1997. Generalized least squares and empirical Bayes estimation in regional partial duration series index‐flood modeling. Water Resources Research, 33(4), 771-781.
Mann, M. P., Rizzardo, J., & Satkowski, R. 2004. Evaluation of methods used for estimating selected streamflow statistics, and flood frequency and magnitude, for small basins in north coastal California. US Department of the Interior, US Geological Survey.
Martins, E. S., & Stedinger, J. R. 2000. Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744.
Matalas, N. C., & Gilroy, E. J. 1968. Some comments on regionalization in hydrologic studies. Water Resources Research, 4(6), 1361-1369.
McCuen, R. H., & Hromadka, T. V. 1988. Flood skew in hydrologic design on ungaged watersheds. Journal of Irrigation and Drainage Engineering, 114(2), 301-310.
Moss, M. E., & Karlinger, M. R. 1974. Surface water network design by regression analysis simulation. Water Resources Research, 10(3), 427-433.
Naghavi, B., & Yu, F. X. 1991. Generalized skew coefficients of annual floods for louisiana streams 1. JAWRA Journal of the American Water Resources Association, 27(2), 209-216.
Nash, J. E., & Sutcliffe, J. V. 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.
Pilon, P. J., & Adamowski, K. 1992. The value of regional information to flood frequency analysis using the method of L-moments. Canadian Journal of Civil Engineering, 19(1), 137-147.
Reis Jr, D. S., & Stedinger, J. R. 2005. Bayesian MCMC flood frequency analysis with historical information. Journal of hydrology, 313(1-2), 97-116.
Reis, D. S. 2005. Flood frequency analysis employing Bayesian regional regression and imperfect historical information. Cornell University.
Reis, D. S., Jr., Stedinger, J. R., and Martins, E. S. 2004. “Operational Bayesian GLS regression for regional hydrologic analyses.” Proc., Critical Transitions in Water and Environmental Resources Management, World Water and Environmental Resources Congress, G. Sehlke, D. F. Hayes, and D. K. Stevens, eds., ASCE, Reston, Va.
Reis, Jr, D. S., Stedinger, J. R., & Martins, E. S. 2003. Bayesian GLS regression with application to LP3 regional skew estimation. In World Water & Environmental Resources Congress 2003 (pp. 1-10).
Renard, B. 2011. A Bayesian hierarchical approach to regional frequency analysis. Water Resources Research, 47(11).
Reza Najafi, M., & Moradkhani, H. 2013. Analysis of runoff extremes using spatial hierarchical Bayesian modeling. Water Resources Research, 49(10), 6656-6670.
Rossi, F., & Villani, P. 1994. Regional flood estimation methods. In Coping with floods (pp. 135-169). Springer, Dordrecht.
Saf, B. 2009. Regional flood frequency analysis using L-moments for the West Mediterranean region of Turkey. Water Resources Management, 23(3), 531-551.
Sando, S. K. 1998. Techniques for estimating peak-flow magnitude and frequency relations for South Dakota streams (Vol. 98, No. 4055). US Department of the Interior, US Geological Survey.
Seckin N., Cobaner M., Yurtal R., and Haktanir T. 2013. Comparison of Artificial Neural Network Methods with Lmoments for Estimating Flood Flow at Ungauged Sites: The Case of East Mediterranean River Basin, Turkey. Water Resources Management, 27:2103-2124.
Shane, R. M., & Gaver, D. P. 1970. Statistical decision theory techniques for the revision of mean flood flow regression estimates. Water Resources Research, 6(6), 1649-1654.
Shu, C., & Burn, D. H. 2004. Homogeneous pooling group delineation for flood frequency analysis using a fuzzy expert system with genetic enhancement. Journal of Hydrology, 291(1-2), 132-149.
Siriwardena, L., & Hadgraft, R. 1994. Regional flood frequency in Victoria. Water Down Under 94: Surface Hydrology and Water Resources Papers; Preprints of Papers, 247.
Stedinger, J. R. 1983. Design events with specified flood risk. Water Resources Research, 19(2), 511-522.
Stedinger, J. R., & Tasker, G. D. 1986. Regional hydrologic analysis, 2, Model‐error estimators, estimation of sigma and log‐Pearson type 3 distributions. Water Resources Research, 22(10), 1487-1499.
Tasker, G. D. 1978. Flood frequency analysis with a generalized skew coefficient. Water Resources Research, 14(2), 373-376.
Tasker, G. D. 1980. Hydrologic regression with weighted least squares. Water Resources Research, 16(6), 1107-1113.
Tasker, G. D., & Stedinger, J. R. 1986. Regional skew with weighted LS regression. Journal of Water Resources Planning and Management, 112(2), 225-237.
Thomas, D. M., & Benson, M. A. 1970. Generalization of streamflow characteristics from drainage-basin characteristics.
Vicens, G. J., Rodriguez‐Iturbe, I., & Schaake Jr, J. C. 1975. A Bayesian framework for the use of regional information in hydrology. Water Resources Research, 11(3), 405-414.
Walker, J. F., & Krug, W. R. 2003. Flood-frequency characteristics of Wisconsin streams (Vol. 3, No. 4250). US Department of the Interior, US Geological Survey.
Wallis, J. R., Matalas, N. C., & Slack, J. R. 1974. Just a moment!. Water Resources Research, 10(2), 211-219.
Wurbs, R.A. and James, W.P. 2000. Water resources engineering: 431p.