Evaluation of Full Factorial, Taguchi and Central Composite Design Methods in Reducing Nitrate Leaching from Soil under Zeolite Treatment

Document Type : Original Article

Authors

1 Graduated from Shahid Chamran University of Ahvaz, Faculty of Water and Environmental Engineering

2 Faculty of Water Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 PhD of Irrigation and Drainage, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz,

Abstract

Use of nitrate fertilizer to increase crop yield is a method used by many farmers. Once this ion enters the soil, it is converted to nitrate and easily leached. Using zeolite is one of the methods to prevent nitrate leaching has received much attention today; however, determining the exact amount of nitrate fertilizer when using zeolite is very important. Performing experiments in a classic way and taking into account the effect of all factors (factorial design) needs time and cost in performing experiments. For this reason, old research methods should be replaced by simple and standard methods such as Taguchi and central composite design. For this purpose, this study was conducted in a completely randomized as factorial design. Treatments consisted of zeolite (at three amount; zero, 2 and 6%) and nitrate application (at three levels; zero, 200 and 400 mg nitrate per kg of soil) with three replications. Taguchi and central composite designs were considered with 9 and 13 experiments, respectively. The results of complete factorial method showed that the amount of zeolite had a significant effect on nitrate leaching; however, nitrate fertilizer had no effect on nitrate leaching. According to Taguchi results, both zeolite and nitrate fertilizer were very important on nitrate leaching reduction from soil. Based on prioritizing the effect in the central composite design, it was observed that zeolite was the most important factor in reducing nitrate leaching. Based on the results, the application of 2% zeolite was the beginning of the effect of zeolite on nitrate leaching. Therefore, it can be expected that in amounts between 2 to 6% zeolite, a significant reduction in nitrate leaching occurs.

Keywords

Main Subjects


کوچکی، ع.، نصیری محلاتی، م.، خرم‌دل، س. و مرید احمدی، س. 1396، بهینه‌سازی تراکم بوته و نیتروژن در زراعت ذرت با استفاده از طرح مربع مرکزی، پژوهش‌های زراعی ایران، 15(6).
کوچکی، ع.، نصیری محلاتی، م.، مرادی، ر. و منصوری، ح. 1392، بهینه‌سازی آب، کود نیتروژن و تراکم در کشت کلزا (Zea mays L.) با استفاده از طرح مربع مرکزی، مجله کشاورزی بوم شناختی، 3(1): 16-1.
نصیری محلاتی، م.، کوچکی، م.، امین‌غفوری، ا. و محلوجی‌راد، م. 1394، بهینه‌سازی تراکم و وزن بنه زعفران (Crocus sativus L.) با استفاده از طرح مربع مرکزی، نشریه زراعت و فناوری زعفران، 3(3): 177-161.
منصوری، ح.، بنایان اول، م.، رضوانی مقدم، پ. و لکزیان، ا. 1393، مدیریت کوددهی نیتروژن و تراکم کاشت در گیاه دارویی موسیر ایرانی (Allium hirtifolium) با استفاده از روش بهینه‌سازی مرکب مرکزی، ویژه‌نامه نشریه دانش کشاورزی و تولید پایدار، 24(4): 60-41.
احمدی، م.، خاشعی‌سیوکی، ع. و سیاری، م. ح. 1395. اثر مقدار کود و زئولیت‌های کلسیمی، پتاسیمی و ترکیبی بر کاهش آبشویی نیترات از خاک. آب و خاک. 30(3): 841-829.
محراب، ن. و چرم، م. 1393. آبشویی نیترات در حضور زئولیت غنی‌شده با آمونیوم در دو نوع بافت خاک تحت کشت گندم. دانش آب و خاک. 24(2): 170-159.
Afrasiabi, H. A., Khayati, G. R. And Ehteshamzadeh, M. 2014. Studying of heat treatment influence on corrosion behavior of AA6061-T6 by Taguchi method, International Journal of Engineering, 27(9):1423-1430.
Aslan, N. 2008. Multi-objective optimization of some process parameters of a multi-gravity separator for chromite concentration, Separation and Purification Technology, 64: 237–241.
Aslan, N. 2007.Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-ravity Separator for coal cleaning. Fuel, 86, 769.
Atil, H. And Unver, Y. 2000. Different of experimental design: Taguchi method, Biol. Sci., 3:1538–1540.
Awty-Carroll, D., Ravella, S., Clifton-Brown, J. and Roboson, P. 2020. Using a Taguchi DOE to investigate factors and interactions affecting germination in Miscanthus sinensis. Sci. Rep., 10, 1602 .
Box, G. E. P. and  Hunter, J.S. 1957. Multi-factor experimental design for exploring response surfaces. Annual Mathemathic, and Statistics, 28,195–241.
Box, G. E. P. and Wilson, K. B. 1951.On theexperimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 13, 1–45.
Celik, M. S., Ozdemir, B. and Turan, M. 2001. Removal of ammonia by natural clay mineral using fixed and fluidized bed column reactors. Water Science and Water Technology: Water Supply, 1(1): 81-88.
Chaulia, P. K. and Das, R. 2008. Process parameter optimization for fly ash brick by Taguchi method. Materials Research, 11(2): 159–164.
Dounane., N. and Trouzine, H. 2020. Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center, 11: 244-257
Jeyapaul, R., Shahabudeen, P. And K. Krishnaiah. 2005. Quality management research by considering multi-response problems in the Taguchi method – a review. Int. J. Adv. Manuf. Technol., 26 (11–12), 1331–1337.
Li, Z. 2002. Use of surfactant –modified zeolite as fertilizer carriers to control nitrate release. Microporous and Mesoporous Material, 61: 181-188.
Li, Z., Willms, C. and Roy, S. 2003. Desorption of hexadecyl trimethyl ammonium from charged surface. Environmental Geoscience, 10(1): 37-45.
Obeng, D. P., Morrell, S. and Napier, T. J. N. 2005. Application of central composite rotatable design to modeling the effect of some operating variables on the performance of the three-product cyclone. International Journal  of  Mineral Processing, 769, 181–192.
Pandey, R. K. And Panda, S. S. 2015. Multi-performance optimization of bone drilling using Taguchi method based on membership function. Measurement, 59:9-13.
Polat, E., Karaca, M., Demir, H. and Naci Onus, A. 2004. Use of natural zeolite (clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant Research, 12:183-189.
Ranjit, R, R. 1990. A primer on the Taguchi method. New York. NY.
Sadeghi, S. H., Moosavi, V., Karami, A. And Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot scale using the Taguchi method, Journal of Hydrology, 448: 174–180.
Taguchi, G. 1990. Introduction to Quality Engineering. McGraw-Hill, New York, USA, p. 191.
Tan, O., Zaimoglu, A. S., Hinislioglu, S. And Altun, S. 2005. Taguchi approach for optimization of the bleeding on cement-based grouts. Tunneling and Underground Space Technology , 20: 167–173.
Waddell, J. T., Gupta, S. C., Moncrief, J. F., Rosen, C. J. and Steele, D. D. 2000. Irrigation and nitrogen management impacts on nitrate leaching under potato. Journal Environmental Quality, 29: 251-261.
Wang, Y., Kmiyaa, Y. and Okuharaa, T. 2007. Removal of low-concentration ammonia in water by ion-exchange using Na-mordenite. Water Research, 41: 269-276.
Zhang, F. B., Wang, Z. L. And Yang, M. Y. 2015. Assessing the applicability of the Taguchi design method to an interrill erosion study, Journal of Hydrology, 521: 65-73.
Zwingmann, N., Singh, B., Mackinnon, I. and Gilkes, R. 2009. Zeolite from alkali modified kaolin increases NH4+ retention by sandy soil: Column experiments. Applied Clay Science, 46: