برآورد دمای سطحی در اراضی کشاورزی با استفاده از تصاویر ماهواره ای (مطالعه موردی: شبکه آبیاری سلیمانشاه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی آب ،دانشگاه رازی، کرمانشاه، ایران،

چکیده

دمای سطحی متغیر مهمی است که در انرژی سطح زمین و بیلان آب دخیل است و یک مولفه کلیدی در بسیاری از جنبه­های تحقیقات محیطی است. دمای سطحی معمولا بر اساس باندهای حرارتی محاسبه می‌شود. باندهای حرارتی ماهواره لندست 8 جدیدترین باندهای حرارتی مادون قرمز هستند که شامل دو باند حرارتی مجاور با تفکیک مکانی 30 متری هستند. روش‌های مختلفی جهت محاسبه دمای سطحی وجود دارد. این روش‌ها سه گروه هستند: روش‌هایی که فقط به داده‌های ماهواره‌ای نیاز دارند، روش‌هایی که به داده‌های ماهواره‌ای و شاخص سطح برگ (LAI) نیاز دارند و روش‌هایی که به داده‌های ماهواره‌ای و داده‌های هواشناسی نیاز دارند. در این تحقیق مقدار دمای سطحی به وسیله روش‌های معکوس تابع پلانک، الگوریتم سبال، الگوریتم آماری تک پنجره، الگوریتم شکاف پنجره، الگوریتم تک پنجره، معادله انتقال تابشی، الگوریتم شکاف پنجره سابرینو، الگوریتم سازمانی سازمان ملی اقیانوسی و جوی مشترک با اداره ماهواره‌ای قطبی و الگوریتم تک کاناله تخمین زده شد. سپس نتایج با دمای سطحی اندازه‌گیری شده در سطح ناحیه عمرانی LPT2 شبکه آبیاری سلیمانشاه در طول فصل رشد آفتابگردان آجیلی در سال 1399 بر اساس دو معیار   و RMSE مقایسه شد. نتایج نشان داد که روش‌هایی که به داده‌های هواشناسی وابسته نیستند، از قبیل روش‌های معکوس تابع پلانک (PIF)، الگوریتم سبال (SEBAL)، الگوریتم آماری تک پنجره (SMW)، الگوریتم شکاف پنجره (SWA) و الگوریتم تک پنجره (MWA) به‌ترتیب از دقت بالایی برخوردارند.  از بین آن‌ها روش معکوس تابع پلانک با مقادیر   و RMSE به ترتیب برابر 0.6 و 4.2 درجه سانتیگراد بالاترین دقت را دارد. روش‌های الگوریتم شکاف پنجره سابرینو (SSWA)، الگوریتم سازمانی سازمان ملی اقیانوسی و جوی مشترک با اداره ماهواره‌ای قطبی (JPSS-NOAA) و الگوریتم تک کاناله (SCA) به‌ترتیب از دقت پایینی برخوردارند.
دمای سطحی متغیر مهمی است که در انرژی سطح زمین و بیلان آب دخیل است و یک مولفه کلیدی در بسیاری از جنبه­های تحقیقات محیطی است. دمای سطحی معمولا بر اساس باندهای حرارتی محاسبه می‌شود. باندهای حرارتی ماهواره لندست 8 جدیدترین باندهای حرارتی مادون قرمز هستند که شامل دو باند حرارتی مجاور با تفکیک مکانی 30 متری هستند. روش‌های مختلفی جهت محاسبه دمای سطحی وجود دارد. این روش‌ها سه گروه هستند: روش‌هایی که فقط به داده‌های ماهواره‌ای نیاز دارند، روش‌هایی که به داده‌های ماهواره‌ای و شاخص سطح برگ (LAI) نیاز دارند و روش‌هایی که به داده‌های ماهواره‌ای و داده‌های هواشناسی نیاز دارند. در این تحقیق مقدار دمای سطحی به وسیله روش‌های معکوس تابع پلانک، الگوریتم سبال، الگوریتم آماری تک پنجره، الگوریتم شکاف پنجره، الگوریتم تک پنجره، معادله انتقال تابشی، الگوریتم شکاف پنجره سابرینو، الگوریتم سازمانی سازمان ملی اقیانوسی و جوی مشترک با اداره ماهواره‌ای قطبی و الگوریتم تک کاناله تخمین زده شد. سپس نتایج با دمای سطحی اندازه‌گیری شده در سطح ناحیه عمرانی LPT2 شبکه آبیاری سلیمانشاه در طول فصل رشد آفتابگردان آجیلی در سال 1399 بر اساس دو معیار   و RMSE مقایسه شد. نتایج نشان داد که روش‌هایی که به داده‌های هواشناسی وابسته نیستند، از قبیل روش‌های معکوس تابع پلانک (PIF)، الگوریتم سبال (SEBAL)، الگوریتم آماری تک پنجره (SMW)، الگوریتم شکاف پنجره (SWA) و الگوریتم تک پنجره (MWA) به‌ترتیب از دقت بالایی برخوردارند.  از بین آن‌ها روش معکوس تابع پلانک با مقادیر   و RMSE به ترتیب برابر 0.6 و 4.2 درجه سانتیگراد بالاترین دقت را دارد. روش‌های الگوریتم شکاف پنجره سابرینو (SSWA)، الگوریتم سازمانی سازمان ملی اقیانوسی و جوی مشترک با اداره ماهواره‌ای قطبی (JPSS-NOAA) و الگوریتم تک کاناله (SCA) به‌ترتیب از دقت پایینی برخوردارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Surface Temperature in Agricultural Lands Using Satellite Images (Case Study: Soleimanshah Irrigation Network)

نویسندگان [English]

  • Saeid Naseri 1
  • Bahman Farhadi Bansouleh 2
  • Arash Azari 1
1 Department of Water Engineering, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran
2 Department of Water Engineering, Razi University, Kermanshah, Iran
چکیده [English]

Land surface temperature is a significant variable involved in land surface energy and water balance and is a substantial component in many aspects of environmental research. The land surface temperature is usually calculated based on thermal bands. Landsat 8 satellite thermal bands are the newest infrared thermal bands, included two adjacent thermal bands with a spatial separation of 30 meters. There are several methods for calculating land surface temperature. These methods are of three groups: Methods that only need satellite data, methods that require satellite data and leaf area index (LAI), and Methods that require satellite data and meteorological data. In this study, the land surface temperature simulated by the Planck Inverse Function, SEBAL algorithm, Statistical Mono-Window algorithm, Split Window Algorithm, Mono-Window Algorithm, Radiation Transfer Equation, Sabrino Split Window Algorithm, National Oceanic and Atmospheric Administration Joint Polar Satellite System, And the Single-Channel Algorithm and compared with the surface temperature measured in the LPT2 construction area of ​​Soleimanshah irrigation network during the growing season of nut sunflower in 2020 based on two criteria of R 2 and RMSE. The results showed the Planck Inverse Function, SEBAL algorithm Statistical Mono-Window algorithm, Split Window algorithm, and Mono Window algorithm respectively have high accuracy (Those approaches are not dependent on meteorological data). Among them, the Planck Inverse Function with values of R2 and RMSE of 0.6 and 4.2 ° C, respectively has the highest accuracy. The Sabrino Split Window algorithm, National Oceanic and Atmospheric Administration Joint Polar Satellite System, and the Single-Channel algorithm, respectively have low accuracy.

کلیدواژه‌ها [English]

  • Surface temperature
  • SEBAL algorithm
  • Planck's inversion function method
  • Landsat 8
  • Leaf area index
احراری، ا. 1398. موتور مجازی پردازش تصاویر ماهواره ای آموزش سامانه گوگل ارث انجین، انتشارات کلید آموزش، تهران.
ادب، ح. 1396. ﺑﺮﺁﻭﺭﺩ ﺭﻃﻮﺑﺖ ﻟﺤﻈﻪﺍﯼ ﺳﻄﺢ ﺧﺎﮎ ﺩﺭ ﻓﺼﻞ ﺳﺮﺩ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺩﺍﺩﻩﻫﺎﯼ ﺳﻨﺠﺶ ﺍﺯ ﺩﻭﺭ ﻧﻮﺭﻱ ﻭ ﺣﺮﺍﺭﺗﻲ ﺩﺭ ﺷﺮﺍﻳﻂ ﺑﺪﻭﻥ ابرناکی، نشریه علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، شماره 21، ص 175-191.
فشائی, م. 1392. برآورد شاخص کمبود رطوبت و تخمین رطوبت خاک با استفاده از سنجش از دور (مطالعه موردی: دشت مشهد)، پایان نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه مهندسی آب.
فکرت،ح. ص. اصغری سراسکانرود و س. ک. علوی پناه. 1399. تخمین دمای سطح اراضی اردبیل با استفاده از تصاویر لندست و ارزیابی دقت روش های برآورد دمای سطح زمین با داده های میدانی،  سنجش ‌از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، سال 11، شماره 4، ص114-136.
Allen, RG., M. Tasumi, R. Trezza, R. Waters, and W. Bastiaanssen. 2002. SEBAL (surface energy balance algorithms for land)—advanced training and user’s manual—Idaho implementation (version 1.0).  The Idaho Department of Water Resources: Boise, ID, USA.
Amazirh, A., O. Merlin, S. Er-Raki, Q. Gao, V. Rivalland, Y. Malbeteau, S. Khabba, and M. J. Escorihuela. 2018. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sensing of Environment, 211:321-337.
Barsi, J., A. John, R. Schott, F. D. Palluconi, and S. J. Hook. 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Observing Systems X.
Chen, S., Z. Wen, H. Jiang, Q. Zhao, X. Zhang, and Y. Chen. 2015. Temperature vegetation dryness index estimation of soil moisture under different tree species.  Sustainability, 7 (9):11401-11417.
Dente, L. 2016. Microwave remote sensing for soil moisture monitoring: synergy of active and passive observations and validation of retrieved products. P.H.D Thesis of Twente University. Netherlands.
Ermida, S. L., P. Soares, V. Mantas, F. M. Göttsche, and I. F. Trigo. 2020. Google earth engine open-source code for land surface temperature estimation from the Landsat series.  Remote Sensing, 12 (9).
Giannini, M. B., O. R. Belfiore, C. Parente, and R. Santamaria. 2015. Land surface temperature from Landsat 5 TM images: comparison of different methods using airborne thermal data. Journal of Engineering Science & Technology Review, 8(3).‏ 83-90.
Kamran, K. V., M. Pirnazar, and V. Farhadi Bansouleh. 2015. Land surface temperature retrieval from Landsat 8 TIRS: comparison between split window algorithm and SEBAL method. Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015).
Kang, Y., M. Ozdogan, S. C. Zipper, M. O. Roman, J. Walker, S. Y. Hong, M. Marshall, V. Magliulo, J. Moreno, L. Alonso, A. Miyata, B. Kimball, and S. P. Loheide, 2nd. 2016. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? a global assessment.  Remote Sensing, 8 (7):597.
Kaniska, m., B. k. Bhattacharya, and n. k. Patel. 2009. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI.  Agricultural and Forest Meterology, 149:1327-1342.
Martins, J., I. Trigo, V. Bento, and C. da Camara. 2016. A physically constrained calibration database for land surface temperature using infrared retrieval algorithms. Remote Sens. 8 (10): 808.
Meng, X., J. Cheng, S. Zhao, S. Liu, and Y. Yao. 2019. Estimating land surface temperature from Landsat-8 data using the NOAA JPSS enterprise algorithm.  Remote Sensing, 11 (2):155.
Mohanty, B. P., M. H. Cosh, V. Lakshmi, and C. Montzka. 2017. Soil moisture remote sensing: State-of-the-science.  Vadose Zone Journal, 16. (1).
Nouri, H., and M. Faramarzi. 2017. Soil moisture estimation in rangelands using Remote Sensing (case study: Malayer, west of Iran).  Journal of Rangeland Science, 7 (1):67-78.
Ogunode, A., and M. Akombelwa. 2017. An algorithm to retrieve land surface temperature using Landsat-8 dataset.  South African Journal of Geomatics 6 (2):262-276.
Sekertekin, A., and S. Bonafoni. 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation.  Remote Sensing 12 (2):294.
Saha, A., M. Patil, V. C. Goyal, and D. S. Rathore. 2018. Assessment and impact of soil moisture index in agricultural drought estimation using Remote Sensing and GIS techniques. 3rd International Electronic Conference on Water Sciences, 7, 2:1-8.
Taghvaeian, S., J. Chávez, and N. Hansen. 2012. Infrared thermometry to estimate crop water stress index and water use of irrigated maize in northeastern Colorado.  Remote Sensing. 4 (11):3619-3637.
Yu, X., X. Guo, and Z. Wu. 2014. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method.  Remote sensing 6 (10):9829-9852.