استخراج توابع توزیع احتمالاتی توأم مشخصه‌های بارش با استفاده از ساختار درختی دی- واین چهاربعدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب دانشگاه تبریز

2 منابع آب، گروه مهندسی آب دانشکده کشاورزی، دانشگاه شهرکرد،

چکیده

تحلیل فراوانی چند متغیره پدیده­های هیدرولوژیکی، با در نظر گرفتن وابستگی بین مشخصه­های اساسی این پدیده­ها، منجر به تخمین دقیق­تر آنها خواهد شد. با توجه به انعطاف­پذیری بالایی که مفصل­های درختی واین در مسائل با ابعاد بالاتر از دو ارائه داده­اند، در این مطالعه از تابع مفصل دی- واین جهت تعیین تابع توزیع احتمالاتی توأم چهاربعدی مشخصه­های مهم رویدادهای بارش ایستگاه سریمونا واقع در کشور ایتالیا شامل بیشینه شدت بارش (M)، عمق کل بارش (R)، مدت زمان دوره مرطوب  (L)و مدت دوره خشک(D)  استفاده شده است. بدین منظور، در ابتدا با توجه به معنی­داری وابستگی بین مشخصه­های مهم رویدادهای بارش و همچنین با استفاده از جایگشت آنها ساختارهای منتخب درختی دی-واین حاصل گردید. پس از برازش مفصل­های مختلف خانواده­های ارشمیدسی و بیضوی بر جفت- مفصل­های هر یک از ساختارهای درختی دی-واین، مناسب­ترین خانواده­های مفصل جهت برازش بر جفت- مفصل­های هریک از ساختارهای دی- واین بواسطه معیارهای حداکثر لوگ درست­نمائی، اطلاعات آکائیکه (AIC) و اطلاعات بیزین(BIC)  تعیین گردیدند. سپس به منظور ارزیابی دقت توابع توزیع احتمالاتی توأم چهاربعدی مشخصه‌های مهم رویدادهای بارش، توابع مذکور با مفصل چهاربعدی تجربی مقایسه گردیدند. در نهایت ساختار دی- واین چهار بعدی M-R-D-L با توجه به میزان معیارهای ارزیابی 991/0 R2=، 031/0 RMSE=، و 024/0 MAE=، و روش گرافیکی بعنوان مناسب­ترین ساختار جهت تعیین تابع توزیع توأم مشخصه‌های مهم بارش در ایستگاه سریمونا انتخاب گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Extraction of joint probabilistic distribution functions of characteristics of precipitation using a four-dimensional D-vine tree structure

نویسندگان [English]

  • Maryam Shafaei 1
  • Rsoul Mirabbasi Najafabadi 2
1 Department of water engineering, Tabriz University
2 Assistant Professor, Department of Water Engineering, ShahrekordUniversity, Shahrekord. Iran.
چکیده [English]

Multivariate frequency analysis of hydrological phenomena by considering the dependence between the basic characteristics of these phenomena will lead to more their accurate estimation. Due to the high flexibility provided by vine tree copulas in problems with dimension greater than two. In this study the D-vine function is used to determine the four-dimensional probabilistic distribution function of main characteristics of the precipitation events of Cremona station in Italy (including maximum rainfall intensity, total rainfall depth, duration of wet period and dry period). First, due to the significant dependence between the main characteristics of precipitation events and also using their permutation, D-vine tree structures were obtained. After fitting the various Archimedean and elliptical copula families to the pair-copulas of each D-vine tree structure, the most suitable copula families were determined for fitting the pair-copulas of each D-vine structure by the maximum log-likelihood, Akaike (AIC) and Bayesian Information Criterion (BIC). Then, in order to evaluate the accuracy of the four-dimensional probabilistic distribution functions of the important characteristics of precipitation events, the mentioned functions were compared with the corresponding four-dimensional empirical copulas. Finally, the M-R-D-L four-dimensional D-vine structure according to the evaluation criteria of R2 = 0.991, RMSE = 0.031, and MAE = 0.024, was selected as the most appropriate structure for constructing of the joint distribution function of main characteristics of precipitation in Cremona station

کلیدواژه‌ها [English]

  • Copula function
  • D-vine
  • Multivariate Frequency analysis
  • Pair-copula
  • Precipitation characteristics
امینی، س.، ر. زارع بیدکی، ر. میر عباسی، و م. شفائی. 1399. تحلیل چندمتغیره سیل با استفاده از مفصل­های Vine در حوزه آبریز بازفت استان چهارمحال و بختیاری. نشریه مرتع و آبخیزداری، مجله منابع طبیعی ایران. دوره 73، شماره 4، جلد ۱۰، ص690-674
خانی تملیه، ذ.، ح. رضائی و ر. میرعباسی. 1399. کاربرد توابع مفصل تودرتو برای تحلیل فراوانی چهار متغیره خشکسالی های هواشناسی (مطالعه موردی: غرب ایران). نشریه حفاظت منابع آب و خاک. سال دهم، شماره 1، ص 112-93.
شفائی، م.، ا. فاخری فرد، ی. دین پژوه، و ر. میرعباسی. 1395. مدلسازی تابع توزیع توأم چهار بعدی ویژگی های مهم سیل با استفاده از ساختار سی-واین. نشریه آبیاری و زهکشی ایران. شماره ۳، جلد ۱۰، ص 337-327.
شفائی، م.، ا. فاخری فرد، ی. دین پژوه، و ر. میرعباسی. 1395. مدلسازی مشخصات رویدادهای بارش با استفاده از مفصل دی- نشریه حفاظت منابع آب و خاک. سال ششم، شماره 2، ص 45-58.
 
Aas, K., C. Czado, A. Frigessi and H. Bakken. 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44 (2): 182–198.
Ariff, N.M., A.A. Jemain, K. Ibrahim and W.Z. Wan Zin. 2012. IDF relationships using bivariate copula for storm events in Peninsular Malaysia. Journal of Hydrology, 470–471:158–171.
Ayantobo, O.O., Y. Li and S. Song. 2019. Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions. Water Resources Management, 33: 103–127.
Bedford, T. and R. Cooke. 2001. Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence, 32 (1): 245–268.
Bedford, T. and R. Cooke. 2002. Vines – A new graphical model for dependent random variables, Annals of Statistics, 30 (4): 1031–1068.
Brechmann, E. C., C. Czado and K. Aas. 2012. Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics, 40 (1): 68-85.
Buliah, N.M. and W. Yie. 2020. Modelling of extreme rainfall using copula. AIP Conference Proceedings 2266, 090007.
Christopher Dzupire, N., P. Ngarea L. Odongoac, 2020. A copula based bi-variate model for temperature and rainfall processes. Scientific African, 8: e00365.
Czado C. .2010. Pair-Copula Constructions of Multivariate Copulas. In: Jaworski P., Durante F., Härdle W., Rychlik T. (eds) Copula Theory and Its Applications. Lecture Notes in Statistics, vol 198. Springer, Berlin, Heidelberg.
 
De Michele, C and G. Salvadori. 2003. A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. Journal of Geophysical Research, 108(D2): 4067.
De Michele, C., G. Salvadori, M. Canossi, A. Petaccia and R. Rosso. 2005. Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10 (1): 50–57.
De Michele, C., G. Salvadori, G. Passoni and R. Vezzoli. 2007. A multivariate model of sea storms using copulas. Coastal Engineering, 54 (10): 734–751.
Dodangeh, E., V.P. Singh, and B.T. Pham. 2020. Flood Frequency Analysis of Interconnected Rivers by Copulas. Water Resources Management, 34: 3533–3549.
Genest, C. and L.P. Rivest. 1993. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88 (423): 1034–1043.
Ghafori, V., H. Sedghi and R.A. Sharifan. 2020. Regional Frequency Analysis of Droughts Using Copula Functions (Case Study: Part of Semiarid Climate of Fars Province, Iran). Iranian Journal of Science and Technology 44, 1223–1235.
Ghosh, S. 2010. Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighboring meteorological subdivisions using copula. Hydrological Processes. 24, 3558–3567.
Gräler, B., M. J. Van den Berg, S.Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and Verhoest, N. E. C. 2013. Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Science, 17 (4): 1281–1296.
Joe, H. 1996. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In L. Rueschendorf, B. Schweizer, and M. D. Taylor (Eds.), Distributions with fixed marginal and related topics. Hayward: Institute of Mathematical Statistics.28: 120-141.
Kao, SC. and RS. Govindaraju. 2010. A copula-based joint deficit index for droughts. Journal of Hydrology, 380(1–2):121–134.
Kendall, M. G. 1938. A new measure of rank correlation, Biometrika, 30(1-2): 81–93
Kurowicka, D. and R. Cooke. 2006. Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, Chichester, 308 p.
Kuchment, L. S. and V. N. Demidov. 2013. On the Application of Copula Theory for Determination of Probabilistic Characteristics of Springflood., Russian Meteorology and Hydrology, 38(4): 263–271.
Mirabbasi, R., A. Fakheri-Fard and Y. Dinpashoh. 2012. Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108 (1): 191–206.
Mirabbasi, R., E.N. Anagnostou, A. Fakheri-Fard, Y. Dinpashoh and S. Eslamian. 2013. Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. Journal of Hydrology, 492: 35–48.
.
Ni, L., D. Wang,  J. Wu, Y. Wang, Y. Tao, J. Zhang. J. Liu and F. Xie. 2020. Vine copula selection using mutual information for hydrological dependence modeling. Environmental Research, 186:1-12.
Palynchuk, B.A. and Y. Guo. 2011. A probabilistic description of rain storms incorporating peak intensities. Journal of Hydrology, 409: 71–80.
Pandey, P.K., L. Das. and D. Jhajharia. 2018. Modelling of interdependence between rainfall and temperature using copula. Modeling Earth Systems and Environment, 4: 867–879.
Rosenblatt, M. 1952. Remarks on a multivariate transformation. Annals of Mathematical Statistics, 27: 832–837.
Salvadori, G. and C. De Michele. 2015. Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans. Journal of Hydrology, 526: 101-115.
Shafaei, M., A. Fakheri-Fard, Y. Dinpashoh, R. Mirabbasi and C. De Michele. 2017. Modeling flood event characteristics using D-vine structures, Theoretical and Applied Climatology, 130: 713–724.
Shiau, J. T. 2006. Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20: 795–815.
 Song, S and V. Singh. 2010. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental and Research Risk A, 24 (3): 425–444.
Sraj, M., N. Bezak and M. Brilly. 2015. Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrologic Processes, 29 (2): 225–238.
Vandenberghe, S., N. E. C. Verhoest, C. Onof and B. De.Baets. 2011. A comparative copula‐based bivariate frequency analysis of observed and simulated storm events: A case study on Bartlett‐Lewis modeled rainfall. Water Resources Researches, 47, W07529: 1-16.
Vernieuwe, H., S. Vandenberghe, B. De Baets and NEC. Verhoest. 2015. A continuous rainfall model based on vine copulas. Hydrology and Earth System Science, 19(6): 2685–2699.
Zhang, L., and V. P. Singh. 2006. Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 332 (1–2): 109-193.
Zhang, L., V. P. Singh. 2006. Bivariate flood frequency analysis using copula method. Journal of Hydrologic Engineering, 11 (2): 150–164.