آزمایشگاه شبیه‌ساز باران و فرسایش پژوهشکده حفاظت خاک و آبخیزداری معرفی ویژگی‌‌ها، قابلیت‌‌ها و کاربردها

نوع مقاله: مقاله پژوهشی

نویسندگان

چکیده

شبیه‌سازی باران بطور وسیعی برای شناخت فرسایش خاک و فرآیندهای مربوط به آن مورد استفاده قرار می‌گیرد. اخیراً در پژوهشکده حفاظت خاک و آبخیزداری، آزمایشگاهی برای شبیه­سازی باران و فرسایش ساخته است که از بسیاری جنبه­ها، متفاوت از سایر انواع موجود در کشور می­باشد. این شبیه­ساز از قسمت­های مختلفی شامل: سامانه آبرسانی، صفحه بارش، فلوم شیب­پذیر، سامانه جمع­آوری و ذخیره آب مازاد، اتاق کنترل و آزمایشگاه جانبی تشکیل شده است. صفحه بارش دارای 6 عدد نازل با قطر روزنه 5/4 میلی­متر است که از ارتفاع 75/7 متر از سطح فلوم، مخروطی از بارش با دامنه­ای از اندازه قطرات مختلف ایجاد می­کند. در این شبیه­ساز، شدت بارندگی از طریق تنظیم فشار آب و تعداد نازل­های فعال، فاصله و چیدمان آنها کنترل می­شود. فلوم موجود در این آزمایشگاه به ابعاد یک در شش متر بوده که دارای سامانه تولید رواناب با دبی مشخص، سیستم زهکش، جک و پاورپک برای کنترل شیب تا 60 درصد و قیف جمع­آوری نمونه رواناب و زهکش در انتهای فلوم است. قطر و توزیع اندازه قطرات به روش گلوله آرد، یکنواختی شدت با استفاده از ضریب کریستین‌سن و نیز سرعت و انرژی جنبشی باران بر اساس دو سناریوی مختلف تعیین گردید. نتایج نشان داد که شدت­های بین 35 تا 125 میلی­متر در ساعت با ضریب یکنواختی بیش از 90 درصد قابل شبیه­سازی است. میانه قطر قطرات تولید شده در شدت­های مختلف، بین 64/1 تا 15/2 میلی­متر و سرعت حد آنها از70/5 تا 78/6 متر بر ثانیه نوسان دارد. همچنین، انرژی جنبشی بین 24/16 تا 97/22 ژول بر متر مربع در میلی­متر باران متغیر است. سیستم یادشده قابلیت شبیه­سازی باران و رواناب به طور مجزا و یا همزمان را دارد. از این روست که بررسی فرسایش ناشی از باران و یا رواناب را در شرایط کنترل­شده آزمایشگاهی میسّر می­سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Rainfall and Erosion Simulation Laboratory Soil Conservation and Watershed Management Research Institute: Characteristics, Capabilities and Applications

نویسندگان [English]

  • Mahid Mahmoodabadi
  • Mahmood Arabkhedri
چکیده [English]

Rainfall simulation is frequently employed in soil erosion and related processes studies. A rainfall simulator was constructed in Soil Conservation and Watershed Management Research Institute (SCWMRI), which is superior to other existing simulators in country. This simulator consists of some parts such as; water supply, rainfall boom, tilting flume, runoff collection and storage system, control keyboard and laboratory. Rainfall boom has 6 nozzles which introduce a distribution of drop sizes from height of 7.75 m. Tilting flume consists of flow generation section, drainage part, slope control facility adjusting to 60%, and runoff collection system. Rain Intensity can be controlled by water pressure, number of active nozzles, their distance and pattern, so different intensities ranges 35 to 125 mm h-1 are simulated with coefficient of uniformity more than 90%. Depending on rain intensity, mean drops diameter varies from 1.64 to 2.15 mm and terminal velocity ranges 5.70 to 6.78 m s-1. Besides, the kinetic energy of falling drops varies from 16.24 to 22.97 J m-2 s-1. This simulator can generate rainfall and or runoff separately or simultaneously. So, it is possible to study rain-driven and or flow- driven processes under laboratory conditions.

کلیدواژه‌ها [English]

  • Rainfall and runoff simulation
  • Pressurized nozzle
  • Tilting flume
  • Soil erosion
  1. روحی­پور، ح.، جوادی، پ. و محبوبی، ع. ا. 1384. تأثیر سنگریزه بر روی فرسایش و رسوب دو نوع خاک با استفاده از فلوم و شبیه­سازی باران. مجموعه مقالات سومین همایش ملی فرسایش و رسوب، 6-9 شهریور، تهران. صص. 716-721.
  2. محمودآبادی، م.، چرخابی، ا. ح. و رفاهی، ح. ق. a 1386. بررسی تأثیر برخی خصوصیات فیزیکی و شیمیایی خاک بر تولید رواناب و رسوب با استفاده از شبیه­ساز باران. مجله تحقیقات مهندسی کشاورزی، جلد 8، شماره 2. صص.1-16.
  3. محمودآبادی، م.، روحی­پور، ح.، عرب­خدری، م. و رفاهی، ح. ق. b 1386. واسنجی، توزیع مکانی و خصوصیات بارش­های شبیه­سازی شده، مطالعه موردی: شبیه­ساز باران مرکز تحقیقات حفاظت خاک و آبخیزداری. مجله علوم و مهندسی آبخیزداری ایران. جلد 1، شماره1، صص. 39-50.

 

  1. Agassi, M. and J.M. Bradford. 1999. Methodologies for interrill soil erosion studies. Soil Tillage Res. 49: 277-287.
  2. Bajracharya, R. M., W.J. Elliot and R. Lal. 1992. Interrill erodibility of some Ohio soils based on field rainfall simulation. Soil Sci. Soc. Am. J., 56: 267-272.
  3. Blanquies, J., M. Scharff and B. Hallock. 2003. The design and construction of a rainfall simulator. International Erosion Control Association (IECA), 34th annual conference and expo. Las Vagas, Nevada.
  4. Cerda, A., S. Ibanez and A. Calvo. 1997. Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Tech. 11: 163-170.
  5. Eigel, J.D. and I.D. Moore. 1983. A simplified technique for measuring raindrop size and distribution. Trans. ASAE. 26: 1079-1084.
  6. Kinnell, P.I.A. 1981. Rainfall intensity- kinetic energy relationships for soil loss prediction. Soil Sci. Soc. Am. J. 45: 153-155.
  7. Laws, J.O. 1941. Measurement of fall velocity of water drops and raindrops. Trans. Am. Geophys. Union. 22: 709-721.
  8. Loch, R.J. and J.L. Foley. 1994. Measurement of aggregate breakdown under rain: Comparison with tests of water stability and relationship with field measurements of infiltration. Aust. J. Soil Res. 32: 701-702.
  9. Meyer, L.D. 1994. Rainfall simulators for soil conservation research. In: Lal, R., (ed.), Soil Erosion Research Methods. Soil and Water Conserv. Soc., Ankeny, Iowa. 83-103
  10. Meyer, L.D. and W.C. Harmon. 1979. Multiple intensity rainfall simulator for erosion research on row sideslopes. Trans. ASAE. 22: 100-103.
  11. Misra, R.K. and C.W. Rose. 1995. An examination of the relationship between erodibility parameters and soil strength. Aust. J. Soil Res. 33: 715-732.
  12. Morgan, R.P.C. 1995. Soil Erosion and Conservation. Second Ed., Silsoe College Canfield, Longman. 198p.
  13. Poesen, J., F. Ingelmo-Sanchez and H. Mucher. 1990. The hydrological response of soil surface to rainfall as affected by cover and position of rock fragment in the top layer. Earth Surf. Process. Landforms. 15: 653-671.
  14. Rouhipour, H., H. Ghadiri and C.W. Rose. 2006. Investigation of the interaction between flow-driven and rainfall-driven erosion processes. Aust. J. of Soil Res. 44: 503-514.
  15. Shelton, C.H., R.D. Von Bernuth and S.P. Rajbhandari. 1985. A continuous- application rainfall simulator. Trans. ASAE. 28: 1115-1119.
  16. Solomon, K. 1979. Variability of sprinkler coefficient of uniformity test results. Trans. ASAE. 22: 1078-1080, 1086.
  17. Tossell, R.W., G.J. Wall, W.T. Dickinson, R. P. Rudra and P.H. Groenevelt. 1990. The Guelph rainfall simulator II: Part 1 Simulated rainfall characteristics. Can. Agric. Eng. 32: 205-213.
  18. Veihe, A., J. Rey, J.N. Quinton, P. Strauss, F.M. Sancho and M. Somarriba. 2001. Modelling of event- based soil erosion in Costa Rica, Nicaragua and Mexico: Evaluation of the EUROSEM model. Catena. 44: 187-203.
  19. Victora, C., A. Kacevas and H. Fiori. 1998. Soil erodibility assessments with simulated rainfall and with the USLE nomograph in soil from Uruguay. Proceeding of 16th World Congress of Soil Science, Montpellier, France. Paper No. 1041.
  1. Gomez, J.A. and M.A. Nearing. 2005. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena, 59: 253-266.
  2. Hamed, Y., J. Albergel, Y. Pepin, J. Asseline, S. Nasri, P. Zante, R. Berndtsson, M. El- Niazy and M. Balah. 2002. Comparison between rainfall simulator erosion and observed reservoir sedimentation in an erosion sensitive semiarid catchment. Catena, 50: 1-16.
  3. Humphry, J.B., T.C. Daniel, D.R. Edwards and A.N. Sharpley. 2002. A portable rainfall simulator for plot-scale runoff studies. Appl. Eng. Agric., 18: 199-204.
  4. Imeson, A.C., H. Lavee, A. Calvo and A. Cerda. 1998. The erosional response of calcareous soils along a climatological gradient in southeastern Spain. Geomorphol., 24: 3-16.
  1. Lasanta, T., J.M. Garcia-Ruiz, C. Perez-Rontome and C. Sancho-Marcen. 2000. Runoff and sediment yield in a semi-arid environment: the effect of land management after farmland abandonment. Catena, 38: 265-278.
  1. Le Bissonais, Y., O. Cerdan, V. Lecomte, H. Benkhadra, V. Souchere and P. Martin. 2005. Variability of soil surface characteristics influencing runoff and interrill erosion. Catena, 62: 111-124.
  1. Loch, R.J., 2000. Using rainfall simulation to guide planning and management of rehabilitated areas: Part I. Experimental methods and results from a study at the northparkes mine, Australia. Land Degrad. Dev. 11: 221-240.
  2. Loch, R.J., R.D. Connolly and M. Littleboy. 2000. Using rainfall simulation to guide planning and management of rehabilitated areas: Part II. Computer simulations using parameters from rainfall simulation. Land Degrad. Dev., 11: 241-255.
  1. Niebes, D., S. Schobel, R. Schneider and D. Schroder. 2001. Sprinkling experiments to characterize the influence of land coverage, land use and different soil types on runoff generation. Geophys. Res. Abstr. 3.
  2. Pla S., I. 2003. Erosion research in Latin America. In: Gabriel, D. and W. Cornelis. (Eds.), Proceeding of International Symp., 25 Year of Assessment of Erosion. Ghent, Belgium. pp. 19-27.
  1. Ries, J.B., and M. Langer. 2002. Runoff generation of abandoned fields in the Central Ebro Basin. Results from rainfall simulation experiments. In: Garcia-Ruiz, J.M., J.A.A. Jones, and J. Arnaez Vadillo. (Eds.), Environmental Change and Water Sustainability. CSIC. Zaragoza, pp. 65-82.
  2. Ries, J.B., M. Langer and C. Rehberg. 2000. Experimental investigations on water and wind erosion on abandoned fields and arable land in the central Ebro Basin, Aragón, Spain. Geomorphol., 121: 91-108.
  1. Roose, E. 2003. Soil erosion research in Africa: A review. In: Gabriel, D. and W. Cornelis. (Eds.), Proceeding of International Symp., 25 Year of Assessment of Erosion. Ghent, Belgium. pp. 29-43.
  2. Schiettecatte, W., K. Jin, Y. Yao, W.M. Cornelis, J. Lu, H. Wu, K. Verbist, D. Cai, D. Gabriels and R. Hartmann. 2005. Influence of simulated rainfall on physical properties of a conventionally tilled loess soil. Catena, 64: 209-221.
  3. Seeger, M. and J.B. Ries. 2002. Runoff generation on abandoned fields in the Central Ebro Basin-results from modelling. In: Garcia-Ruiz, J.M., J.A.A. Jones and J. Arnaez. (Eds.), Environmental Change and Water Sustainability. CSIC. Zaragoza, pp. 83-97.
  4. Sharpley, A. and P. Kleinman. 2003. Effect of rainfall simulator and plot scale on overland flow and phosphorus transport. J. Environ. Qual., 32: 2172-2179.
  1. Stroosnijder, L. 2005. Measurement of erosion: is it possible? Catena 64: 162-173.