برآورد تبخیر و تعرق واقعی با استفاده از تصاویر سنجنده استر و مدل متریک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه گیلان

4 مربی گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و محیط زیست

5 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

در این تحقیق کارایی یک روش نسبتاً جدید به نام متریک[1] در برآورد تبخیر و تعرق واقعی بر روی سه محدوده کشاورزی واقع در مجاورت ایستگاه­های سینوپتیک مشهد، گلمکان و قوچان مورد بررسی قرار گرفته است. برای انجام این کار از تصاویر سنجنده استر[2] استفاده شد. به دست آوردن تبخیر و تعرق در وضوح بالا  )قدرت تفکیک مکانی بالا) با کالیبراسیون داخلی[3]، یک مدل پردازش تصویر ماهواره ای برای محاسبه تبخیر و تعرق واقعی به صورت باقیمانده معادله بیلان انرژی سطحی است. اساس مدل متریک بر فرآیند بیلان انرژی سبال[4]، که اولین بار توسط باستیانسن ارائه شده، استوار می­باشد. روش متریک با استفاده از تبخیر و تعرق مرجع (مبتنی بر داده­های زمینی) کالیبره می­شود، تا خطای محاسباتی معمول در روش­های بیلان انرژی مبتنی بر سنجش از دور را کاهش دهد. با توجه به نتایج به دست آمده، حداکثر میزان تبخیر و تعرق واقعی برای سه محدوده کشاورزی گلمکان، مشهد و قوچان به ترتیب برابر با 13/9، 29/7 و 37/2 میلی متر در روز به دست آمد. همچنین نتایج نشان داد که مدل توازن انرژی متریک از مدل های مناسب جهت برآورد تبخیر و تعرق واقعی در مقیاس محلی می­باشد


 

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Evapotranspiration Actual Using Sensor Aster and Model Metric

نویسندگان [English]

  • javad Omidvar 1
  • kamran Davari 2
  • saleh arshad 3
  • mohammad mousavi bayegi 2
  • Morteza Akbari 4
  • Alireza Farid hosseini 5
چکیده [English]

In this study, a performance relatively new technique called the metric for estimating evapotranspiration actual (ETact) on Threeagricultural area located in the vicinity of synoptic stationsMashhad, Quchan and Golmkan has been studied. The purpose of satellite images Aster is used. Mapping evapotranspiration at high resolution with internalized calibration (METRIC) is a satellite-based image-processing model for calculating evapotranspiration (ET) as a residual of the surface energy balance. METRIC uses as its foundation the pioneering SEBAL energy balance process developed in The by Bastiaanssen. The surface energy balance is internally calibrated using ground-based reference ET to reduce computational biases inherent to remote sensing-based energy balance. According to the results, the maximum amount of evapotranspiration actual for the three ranges reserved Golmkan, Mashhad and Quchan 9/13, 7/29 and 2/37mm per day respectively. The results shows the model of energy balance metric for estimating evapotranspiration actual is the local scale suitable.

کلیدواژه‌ها [English]

  • Energy balance
  • evapotranspiration
  • METRIC
  • Remote Sensing
  1. Allen, R. G. 1996. “Assessing integrity of weather data for use in referenceevapotranspiration estimation.” J. Irrig. Drain. Eng., 122-2-,97–106.
  2. Allen, R.G., Tasumi, M., Morse, A. 2005".Satellite-based evapotranspiration by METRIC and Landsat for western states water management". US Bureau of Reclamation Evapotranspiration Workshop, Feb 8–10, 2005, Ft. Collins
  3. Allen, R.G., Tasumi, M., Morse. A, Trezza , R. 2005. "Satellite-Based Evapotranspiration by Energy Balance for Western States Water Management".
  4. Allen, R.G., Tasumi, M., Morse. A, Trezza , R.Wright, J.L,. Bastiaanssen, W., Kramber, W,, Lorite-Torres, I., Robison, C.W . 2007b. "Satellite based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-applications". ASCE J Irrig Drain Eng 133(4):395–406.
  5. Allen, R. G., Tasumi, M., and Trezza, R. 2007. “Satellite-based energy balance for mapping evapotranspiration with internalized calibration )METRIC) Model.” J. Irrig. Drain. Eng., 133-4- 380–394.
  6. Bastiaanssen, W. G. M. 1995. “Regionalization of surface flux densitiesand moisture indicators in composite terrain: A remote sensing approachclear skies in Mediterranean climates.”
  7. Bastiaanssen, W. G. M. 1998a. “Remote sensing in water resources management: The state of the art.” International Water Management  Institute, Colombo, Sri Lanka.
  8. Bastiaanssen, W. G. M. 1998b. “The surface energy balance algorithm for land _SEBAL_. 2: Validation.” J. Hydrol., 212–213, 213–229.
  9. Bastiaanssen, W. G. M. 2000. “SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey.” J. Hydrol., 229, 87–100.
  10. Bastiaanssen, W. G. M. et al. 2005. “SEBAL model with remotely sensed data to improve water-resources management under actual field conditions.” J. Irrig. Drain. Eng., 131-1, 85–93.
  11. Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A.M. 1998. “A remote sensing surface energy balance algorithm for land (SEBAL): 1.Formulation.” J. Hydrol., 212–213, 198–212.
  12. Chavez, J.L,. Gowda, PH,. Evett, S.R,. Colaizzi, P.D., Howell, T.A,. Marek, T. 2007.”An application of METRIC for ET mapping in the Texas high plains”. December 9–11, 2007, Irrigation Association CD-ROM, San Diego, pp 268–283
  13. Folhes, M.T.,  Renno, C.D., Soares, J.V. 2009.” Remote sensing for irrigation water management in the semi-arid Northeast of Brazil”. Agricultural Water Management 96 (2009) 1398–1408.
  14. Kustas, W. P., et al. 1994. “Surface energy balance estimates at local and regional scales using optical remote sensing from an aircraft platform and atmospheric data collected over semiarid rangelands.” Water Resour. Res., 30-5, 1241–1259.
  15. Tasumi, M,. Allen, R.G,. Trezza, R .2005. “Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S”. Irrigation and Drainage Systems (2005) 19: 355–376.
  16. Tasumi, M. 2003. “Progress in operational estimation of regional evapotranspiration using satellite imagery.” Ph.D. dissertation, Univ of Idaho, Moscow, Id.