بررسی میزان کارایی مدل SDSM در شبیه‌سازی شاخص‌های دمایی در مناطق خشک و نیمه‌خشک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 آبخیزداری دانشگاه علوم کشاورزی ومنابع طبیعی ساری

2 روه مرتع و آبخیزداری دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

3 استاد دانشگاه علوم کشاورزی ومنابع طبیعی ساری

4 استادیار مرکز تحقیقات کشاورزی ومنابع طییعی استان کرمان

چکیده

تغییر اقلیم خصوصا افزایش دما مهم‌ترین معضل کرة زمین در قرن بیست و یکم می­باشد. بنابراین ارزیابی میزان روند این معضل در مقیاس جهانی، منطقه­ای و محلی از اهمیت ویژه­ای برخوردار است. امروزه تعداد زیادی مدل گردش عمومی جو برای  پیش‌بینی وضعیت اقلیم در آینده طراحی شده است، اما خروجی حاصل از این مدل­ها به دلیل محدودیت در تفکیک مکانی در مقیاس محلی،  قابل استفاده نمی­باشند. لذا روش­های متعددی به منظور استفاده از خروجی این مدل­ها در مقیاس منطقه­ای و محلی ابداع شده است. متاسفانه علی­رغم تحقیقات گسترده هنوز امکان توصیه یک روش معین برای یک منطقه خاص وجود ندارد به همین دلیل در هنگام استفاده از این روش­ها در یک منطقه­ی خاص باید ابتدا میزان کارایی آن مورد بررسی قرار گیرد. یکی از متداول­ترین این روش­ها استفاده ازمدل ریز مقیاس نمایی [1] می­باشد. در این تحقیق ابتدا میزان کارایی این مدل جهت ریز مقیاس نمایی شاخص­های دمایی در ایستگاه شهر کرمان به عنوان نمایندة مناطق خشک مورد ارزیابی قرار گرفت. سپس شاخص­های دمایی ایستگاه کرمان تا سال 2100 شبیه سازی شدند. بدین منظور ابتدا مدل SDSM با استفاده از داده‌های مشاهداتی ایستگاه کرمان و داده­های بازسازی­شدة مرکز ملی پیش‌بینی اقلیمی کانادا کالیبره و واسنجی شدند. به منظور ارزیابی مدل از معیار میانگین خطای مطلق استفاده شد و بعد از اطمینان حاصل نمودن از دقت شبیه‌سازی مدل، با استفاده از دو مدل گردش عمومی CGCM1[2] و [3]H  تحت دو سناریو  و  شاخص­های دمایی (حد اکثر، حداقل  و متوسط دمای سالانه) برای این ایستگاه تا سال 2100 شبیه­سازی شد. نتایج حاصل از این تحقیق نشان داد، که مدل مذکور توانایی لازم جهت شبیه­سازی شاخص­های دمایی را دارد. همچنین استفاده از داده‌های مدل HadCM3 نسبت به داده‌های مدل CGCM نتایج بهتری را ارائه می­دهد. بر اساس داده‌های این مدل میزان افزایش میانگین درجة حرارت سالانه برای دوره­های (2039-2010)، (2069-2040) و (2089-2070) نسبت به دورة پایه (1990-1961) به ترتیب برابر با 5/1، 8/2 و 5/4 درجة سانتی‌گراد می­باشد.



 


 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation efficiency SDSM model to simulate temperture indexes in arid and semi-arid regions

نویسندگان [English]

  • Ali jan Abkar 1
  • Mahmood Habib nejad roshan 2
  • Karim Solaimani 3
  • Hormozd Naghavi 4
1 D student of watershed management Agricalture and Natural Resources university of Sari
3 Professor of Sari Agricultural Science and Natural Resources.Department of rang and watershed managemen
4 Assistant professer of Agricultural and Natrual Resources Research center of Kerman province
چکیده [English]

Climate change especially global warming is the most problem in the 21st century. So investigation variability  trend this problem is very important in global ,regional and local scale.Newadays numerous general circulation models(GCMs) have been designed to predicat future climat.An outstanding issu of output for regional and local applications is coarse spitial resoluation.To produce accurate predications of future climate variables at the regional and local scale various methods are suggested.Despit many studies this  case, ufortunately,there is not a standard method for a specific rogion.Thus it is necessary that accurate predications of these methods are evaluated befor applaying in a certain region.One of th most widspread  methods is Statistical DownScaling Model(SDSM).In this research efficiency of SDSM model is evaluated to simulate temperture indexes in Kerman station, instance arid and semi- arid regions.Hence ,SDSM is calibrated and validated  by using kerman station observ tempertur and national center enviromental predication data.We used mean absolute criterium to evaluate model.After obtaining confidence simulation accuracy. Temperture indexes (mean,absoluate maximmum and minimm temperture)are simulated by using two GCMs(CGCMand HadCM3 under A2 and B2 scenarios)until 2100-year.The result of this study is shown that SDSM model has suitably to simulate temperture indexes  also using HadCM3 model data is beter than that of CGCM  model. Increasing  mean annual temperture on base HadCM3 model in (2010-2039),(2040-2069)and(2070-2100) periods relation to base period (1961-1990) is respectively 1.5,2.8 and 4.5 degree of centigrade in Kerman station.

کلیدواژه‌ها [English]

  • arid and semi-arid regions
  • Climate change
  • general circulation models
  • SDSM model
  • temperture indexes

1- بابائیان، ا.، ز. نجفی­نیک، ف. زابل­عباسی، م. حبیبی­نوخنذان، ح. ادب و ش. ملبوسی. 1388. ارزیابی تغییر اقلیم کشور در دوره 2039-2010 میلادی با استفاده از ریز مقیاس نمایی داده‌های گردش عمومی جو   ECHO-Gمجله جغرافیا و توسعه شماره (16):16-1.

2- تورینی، ن. و م.ر. حسامی­کرمانی.1390. پیش­بینی دمای ماکزیمم، مینیمم و میانگین با استفاده از الگوریتم نرو-فازی در ایستگاه کرمان. پنجمین کنفرانس سراسری آبخیزداری و مدیریت منابع آب و خاک ، 9 الی 10 اسفند. کرمان.

3- صمدی، ز.، ع.ر. مساح بوانی و م. مهدوی. 1387. معرفی روش­ شبکه عصبی مصنوعی و مدل SDSM  بمنظور کوچک مقیاس کردن آماری داده­های دما و بارندگی، سومین کنفرانس مهندسی منابع آب، دانشگاه تبریز، مهر 1378.

  4- صمدی، ز.، ع.ر. مساح بوانی و م. مهدوی. 1388. انتخاب متغیر پیش­بینی کننده به­منظور کوچک مقیاس کردن داده­های دما و بارندگی در حوزه آبخیز کرخه. پنجمین همایش ملی علوم و مهندسی آبخیزداری ایران (مدیریت پایدار بلایای طبیعی)، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

5- مساح بوانی، ع.ر. 1385. ارزیابی ریسک تغییر اقلیم و تاثیرآن بر منابع آب، رساله دکتری، دانشگاه تربیت مدرس. ص21-13.

6- مساح بوانی، ع.ر.، س. مرید. 1385 .اثرات تغییر اقلیم بر جریان رودخانه زاینده رود اصفهان مجله علوم و فنون کشاورزی و منابع طبیعی سال نهم شماره 4 ص 34-23

7- Coulibaly, P. and B. Yonas. 2005. Downscaling precipitation and temperature with temporal neural networks. American Meterology socity, (6):483-496P.

8- Fowler, H.J. and R.L. Wilby. 2007. Editional:Beyond the downscaling comparison study.International Journal of climatology,(27): 1534-1545.

9- Fung, F., A.L. Lopez and M. New. 2011. Modeling the impact of climate change on water resources.Wiley-Blackwell,N,(187):43-62.

10- Giorgi, F. and  L.O. Mearns. 1991. Approaches to the simolation of regional climate change:a review. Reviews of  Gheophysics,( 29): 191-219.

11- Harphamc, H. and R.L. Wibly. 2005. Multi-site down scalling of heavy daily precipitation occurrence and amount. jurnal of hydrology, (312):235-255

12- Hewiston, B.C. and R.G. Crane. 1996. Climate downscaling: techniques and application . Climate Research,(7): 85_95.

13- IPCC-TGICA. 2007: General guidelines on the use of scenario data for climate impact an adaptation assessment. Version 2. Prepared by T.R. Carter on behalf of the Intergovernmental Panel on Climate Change, Task Group on Data and Scenario Support for Impact and Climate Assessment, 66pp.

14- Kim, j.w., J.T. Chang., N.L. Baker., D.S. Wilks and W.L. Gates. 1984. The statistical problem of climate inversion :determination of the relationship between local and large scale.climate monthly weather review,(12):2069-2077.

15- Koukidis, E.N. and A.A. Berg. 2009. sensitivity of statistical downscaling model(SDSM)to reanalysis products.Atmosphere –ocean,47(1):1-18.

16- Malcolm, R., H. Harpham., R.L.Wilby and C.Goodees. 2006. Downscaling heavy precipitaion over the united kingdom: A comparison of dynamical and statistical methods and their future scenarious. International  jurnal of climatology.(9): 1397-1415

17- Prudhomme, C., N. Reynard and S. Crooks. 2002. Downscaling of global climate models for flood frequency analysis: where are we now?. Hydrological Processes,( 16): 1137_1150.

18- Semenov, M.A. 2008. Simulation of extreme weather events by a stochastic weathergenerator. Climate Research, (35): 203-212.

19- Van, T. and N. Van. 2005. Downscaling methods for evaluating the impact of climate change and variability on hydrological regime at basin scale.role ofwater sciences in Transboundary riverbasin management.Thailand:1-8.

20- Wilby, R.L. and W.C. Dawson. 2007. SDSM 4.2- A decision support tool for the assessment of regional climate change impacts, SDSM manual version 4.2, Environment Agency of England and Wales:94pp

21- Wilby, R.L., O.J. Tomlinson and W.C. Dawson. 2003. Multi-site simulation of precipitation by conditional resampling. journal of climate research, (23):183-194.

22- Wilby, R..L., C.W. Dawson and E.M. Barrow. 2002. sdsm - a decision support tool for the assessment of regional climate change impacts .Environmental Modelling & Software,( 17 ):147–159.

23- Wilby, R.L. and T.M.L. Wigley. 2000. Precippitation predictors for downscaling:observed and Genaral circulation model relationships. International Journal of  Climatologhy,( 20): 641-661.

24-Xu,C.Y. 1999. from GCMs to river flow: a review of down scaling methods and hydrologic modeling approaches. Progress in Physical Geography,( 23): 229-249.

25-Zhaofa, L., Z. Xu., P.Stephen., G. F.Chales and L.Liu. 2011. Evaluation of two statistical down scalling models for daily precipitation over an arid basin in chine. Royal meteorogical society, (31):2006-2020

26-Zorita, E and V.H. Storch. 1999. The analog method as a simple statistical downscaling techniqe: Comparison with more complicated methods. Journal of climate,( 12): 2474-2489.

27-Christensen, J.K., T.R. Carter., M. Rummukainen and G. Amanatidis. 2007a. Evaluating the performance and untility of regional climate models: The prudense project.Climatic Change,(81),1-6.