پیش بینی کیفیت آب‌های سطحی با استفاده از روش درخت تصمیم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب دانشکده کشاورزی، دانشگاه تبریز

2 کارشناسی ارشد مهندسی عمران، دانشگاه آزاد مراغه

3 منابع آب، گروه مهندسی آب دانشکده کشاورزی، دانشگاه شهرکرد،

چکیده

با توجه به کمبود منابع آب‌های سطحی در ایران توجه به کیفیت آب و اتخاذ تمهیداتی در راستای جلوگیری از آلودگی منابع آب شیرین ضروری است. توسعه پایدار کشاورزی بدون در نظر گرفتن کیفیت شیمیایی آب‌های سطحی غیرممکن است. کنترل کیفیت آب از موضوعات مورد توجه در برنامه­ریزی آبیاری اراضی کشاورزی می باشد. از آنجائیکه پایش و ارزیابی کیفت آبهای سطحی پرهزینه و زمان بر می‌باشد، بنابراین، یافتن روشی ارزان، آسان و نسبتا دقیق که در آن با حداقل پارامترهای هیدروشیمیایی بتوان طبقه کیفیت آب را پیش‌بینی نمود، بسیار مفید می باشد. درخت تصمیم جزو روش‌های نوین داده کاوی بوده که با بهره‌گیری از یک ساختار درختی داده‌ها را طبقه‌بندی نموده و ضمن استخراج الگوها و قوانین موجود در بین داده‌ها به منظور پیش‌بینی به کار می رود. در این مقاله با استفاده از روش تصمیم‌گیری درختی کیفیت آب برخی از رودخانه‌های واقع در دامنه‌های جنوبی کوه سهند در محل ایستگاه‌های هیدرومتری چکان، قیرمیزی گ‍ؤل، شیشوان، تازه کند مراغه و مغانجیق مورد بررسی قرار گرفت و برای هریک از رودخانه طبقه کیفیت آب با استفاده از قوانین اگر-آنگاه توسعه داده شد. نتایج بدست آمده از مدل نشان داد که روش تصمیم‌گیری درختی قادر است با استفاده از کمترین تعداد پارامتر هیدروشیمیایی طبقه کیفیت آب را با دقت بسیار بالایی تعیین کند.

کلیدواژه‌ها


عنوان مقاله [English]

Surface water quality prediction using decision tree method

نویسندگان [English]

  • Mohammad taghi sattari 1
  • Mehdi Abbasgoli Naebzad 2
  • Rsoul Mirabbasi Najafabadi 3
1 Assistant Professor, Department of Water Engineering, University of Tabriz, Tabriz, Iran.
2 MSc student of Civil Engineering, Islamic Azad University of Maragheh, Maragheh, Iran.
3 Assistant Professor, Department of Water Engineering, ShahrekordUniversity, Shahrekord. Iran.
چکیده [English]

Consideration of water quality and implementation of appropriate actions for preventing of water resources pollution is a very important issue in Iran because of surface water deficit. Sustainable development of agriculture is impossible without considering of surface water quality. Water quality control is a noteworthy issue in irrigation scheduling program of agricultural land. Since surface water quality monitoring and assessment is very expensive and time consuming. Thus, finding a cheap, simple and relatively exact method which can predict the water quality class base on minimum hydro chemical parameters would be very useful. Decision tree as one of the data mining techniques classify data sets based on a tree structure and uses for prediction base on extracting the exiting patterns and roles among data sets. In this study, the decision tree method was used to classify water quality in some hydrometrics stations located at southern side of Sahand Mountain, including Chekan, Girmizigol, Shishovan, Tazekand and Moghanjig. The water quality classes were defined based on if-then rules. The results showed that the decision tree method is able to predict the water quality classes based on small number of hydro chemical parameters with high accuracy

کلیدواژه‌ها [English]

  • surface water quality
  • Data mining
  • decision tree
  • hydro chemical parameters
  • Sahand Mountain

 

1. حاجیان نژاد م. و ا.ر. رهسپار. 1389. بررسی تاثیر روان آب ها و پساب تصفیه­خانه فاضلاب بر پارامترهای کیفی آب رودخانه زاینده رود. مجله تحقیقات نظام سلامت /سال ششم/ویژه نامه، ص 821-828.

2. رحمانی ع. ر.، م.ت. صمدی و م. حیدری. 1387. ارزیابی کیفیت آب رودخانه های جاری در دشت همدان-بهار برای آبیاری بر مبنای دیاگرام ویلکوکس. فن آوری زیستی در کشاورزی. سال هشتم، شماره 1، ص 27-36.

3. سلاجقه ع.، س. رضوان زاده، ن. ا. خراسانی، م. حمیدی فر و س. سلاجقه. 1390. تغییرات کاربری اراضی و آثار آن بر کیفیت آب رودخانه (مطالعه موردی: حوضه آبخیزکرخه). محیط شناسی، سال سی و هفت، شماره 58، ص 81-86.

4. علیایی ا.، ح. بانژاد، م.ت. صمدی، ع.ر. رحمانی. و م.ح. ساقی. 1389. ارزیابی کارایی شبکه عصبی مصنوعی در پیش­بینی شاخص­های کیفی (BOD و DO) آب رودخانه دره مرادبیک همدان. مجله دانش آب و خاک، جلد 1/20، شماره 3، ص 199-210.

5. گلجان ف.، ع. ر. کرباسی، ن. حاجی زاده ذاکر و غ.ر. نبی بیدهندی. 1388. تعیین کلاسه کیفی آب رودخانه­های شهرستان نور. فصل­نامه تحقیقات علوم آب، سال اول، شماره اول، ص 35-48.

6. Mirabbasi, R., Mazloumzadeh, S.M., & Rahnama, M.B., (2008). Evaluation of irrigation water quality using fuzzy logic, Research Journal of Environmental Sciences, 2(5): 340-352.

7. Quinlan, J.R. (1993). C4.5 Programs for machine learning, Morgan, Kaufmann, San Mateo, California.

8. Quinlan, J.R. (2000). Data mining tools See5 and C5.0 [cited Feb 2012]. Available from http://www.rulequest.com/see5-info.html.

9. Santos, M.F., Cortez, P., Quintela, H., Neves, J., Vicente, H. & Arteiro, J. (2005). Ecological Mining - A Case Study on Dam Water Quality6. In A. Zanasi, C. Brebbia and N. Ebecken (Eds.), Data Mining VI - Data Mining, Text Mining and their Business Applications, WIT Transactions of Information and Communication Technologies Vol. 35, pp. 523-531, WIT Press, 2005, ISBN:1-84564-017-9, ISSN:1746-4463.

10. U.S. Salinity Laboratory Staff, (1954). Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agric. Handbook No.60, 160 p.

11. Wilcox, L.V. (1955). Classification and use of irrigation waters: U.S. Dept. Agric. Circ. 969, 19p.

12. Yahya, S.M., Rahman, A.U., Abbasi, H.N. (2012). Assessment of seasonal and polluting effects on the quality of river water by using regression analysis: A Case Study of River Indus in Province of Sindh, Pakistan. International Journal of Environmental Protection. 2(2): 10-16.