ارزیابی توابع انتقالی در برآورد رطوبت اشباع خاک‌های آهکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی دانشگاه ارومیه

2 گروه مهندسی آب دانشگاه ارومیه

3 استاد یار گروه مهندسی آب دانشگاه ارومیه

4 استاد‌یار گروه مهندسی آب دانشگاه ارومیه

چکیده

برآورد منحنی رطوبتی خاک نقش مهمی در مدل­سازی حرکت آب و املاح در خاک­ها دارد. رطوبت اشباع خاک یکی ازپارامتر­های مهم در مطالعات خاک است که به منظور برآورد منحنی رطوبتی خاک و هدایت هیدرولیکی غیر اشباع خاک مورد استفاده قرار     می­گیرد. توابع انتقالی به عنوان روشی غیر مستقیم مطرح بوده که پارامتر­های دیر­یافت خاک را از روی پارامتر­های زود­یافت برآورد می­نماید. جهت توسعه توابع انتقالی، روش­های رگرسیون چند­گانه خطی و شبکه عصبی­مصنوعی بکار گرفته می­شوند. در این تحقیق، بافت خاک، جرم مخصوص ظاهری، جرم مخصوص حقیقی، درصد مواد آلی و مقدار آهک به عنوان پارامتر­های زود­یافت و مقدار رطوبت اشباع به عنوان پارامتر دیر­یافت خاک در نظر گرفته­ شدند. در این مطالعه، با استفاده از پارامتر­های زود­یافت در 136 نمونه خاک، 14 مدل توابع رگرسیونی و 6 مدل شبکه عصبی­مصنوعی به منظور برآورد رطوبت اشباع خاک مورد ارزیابی قرار گرفتند. در نهایت، مقادیر اندازه­گیری­شده و برآورد­شده رطوبت اشباع خاک با همدیگر مقایسه و توانایی هر مدل توسط شاخص­های آماری ارزیابی گردید. شاخص­های نسبت خطای میانگین هندسی (GMER)، معیار آکائیک (AIC) و ریشه میانگین مربعات خطا (RMSE) نشان دادند که شینوست و همکاران (به ترتیب با مقادیر 1/1، 8/610-  و  104/0m3/m3 ) و مدل­های میناسنی و همکاران (به ترتیب با مقادیر 1، 6/563-  و  124/0m3/m3 ) برآورد بهتری از رطوبت اشباع خاک داشتند. نتایج نشان داد که مقدار کم مواد آلی تأثیر معنی­داری بر روی دقت برآورد مدل­های شبکه عصبی داشت ولی درصد آهک تأثیر معنی­دار بر روی توابع مذکور ایجاد نکرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of pedotransfer Functions in estimating saturated water content of limy soils

نویسندگان [English]

  • Elnaz Rezaee abajloo 1
  • Javad Behmanesh 2
  • Bayramali Mohammad Nejhad 3
  • kamran Zeynalzadeh 4
  • Benam Habibzadeh azar
2 Assistant pro. Of Urmia university
3 - Assistant pro. Of Urmia university
چکیده [English]

Estimating the soil moisture curve has an important role in modeling water movement and solute transport in the soils. Saturated water content is one of the important parameters in soil studies which is used to estimate the soil water retention curve and unsaturated hydraulic conductivity. Pedotransfer functions are as undirected methods which estimate soil time consuming parameters from readily measured parameters. The multi-linear regression and artificial neural network methods were used to develop the pedotransfer functions. In this research, soil texture, bulk density, soil particle density, organic material percent and lime content percent as readily measured parameters and saturated water content as time consuming parameter were considered. In this study, using soil readily measured parameters in 136 soil samples, 14 models of multi-linear regression and 6 models of artificial neural network were evaluated in order to estimate saturated water content. Finally, measured and estimated values of soil saturated water content were compared and each model ability was evaluated by statistical indices. The indices of Geometric Mean Error Ratio (GMER), Akaike’s Information Criterion (AIC) and Root Mean Square Error (RMSE) showed that Minasny et al and shinoset et al models had better estimation of saturated water content. The results showed that low content of organic materials had the significant effect on the accuracy of neural network models estimation but lime percent had not the significant effect on the so called models.

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • Limy soils
  • Pedotransfer functions
  • Saturated water content

1- بانی دشتکی، ش. و م. همایی. 1381. برآورد پارامتریک توابع هیدرولیکی بخش غیر اشباع خاک با استفاده از توابع انتقالی. مجله تحقیقات مهندسی کشاورزی. شماره 12، جلد 3: ص1-15.

2- قربانی دشتکی، ش. 1386. برآورد پارامتریک نفوذ آب به خاک با استفاده از توابع انتقالی خاک، شبکه­های عصبی مصنوعی و زمین آمار، رساله دکتری، دانشگاه تربیت مدرس، 256ص.

3- قربانی دشتکی، ش.، م. همایی و م.ح. مهدیان. 1388. برآورد پارامتر­های نفوذ آب به خاک با استفاده از شبکه­های عصبی مصنوعی. مجله آب و خاک، 23 (1): ص185-198.

4- مروج، ا. 1387. ارائه مدل نفوذپری با استفاده از روش هوش مصنوعی. پایان­نامه کارشناسی ارشد دانشگاه آزاد اسلامی، واحد شوشتر. 80ص.

5- مطلبی. ا.، م. همایی، ق. زارعی و ش. محمودی. 1389. بررسی تاثیر آهک بر ویژگیهای رطوبتی خاکهای سری گرمسار با استفاده ازتوابع انتقالی. مجله آبیاری و زهکشی ایران. شماره 3، جلد 4. 426-439.

6- قنبریان علویجه، ب. و ع. لیاقت. 1390. ارزیابی توابع انتقالی و تاثیر ماده آلی در پیش بینی رطوبت اشباع خاک. نشریه آب و خاک (علوم و صنایع کشاورزی). شماره 5، جلد 25، ص 1016-1024.

 

7- Blake G.R. and K.H. Hartge. 1986. Bulk Density. In: Klute, A. (Ed). Methods of soil Analysis. . Part 1. 2nd ed. Agron. Monogr. 9. ASA. Madison. WI. Pp. 363-375.

8- Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Advanced Soil Science, 9, 177-213.

9- Dane, J.J. &  G.C. Topp. (Eds.), 2002. Methods of Soil Analysis Part 4. Physical Methods.Soil Sci. Soc. Am., Inc., Madison, WI.

10- Dirksen, C. 2000. Unsaturated hydraulic conductivity. In: Smith, K.A., Mullins, C.E. (Eds.), Soil Analysis: Physical  Methods , second ed. Marcel Dekker Inc., New York, pp. 183–237.

11- FAO/UNDP. 1972. Calcareous Soils. Report of the Regional Seminar on Reclamation and Management of Calcareous Soils. 27 November–2 December, Cairo, Egypt.

12- Frenkel, H., A. Hadas & W.A. Jury. 1978. The effect of salt precipitation and high sodium concentration on soil hydraulic conductivity and water retention. Water Resour. Res. 14, 217–222.

13- Gee, G.W. & D. Or. 2002. Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis, Part 4 SSSA Book Series No. 5. Soil Sci. Soc. Am., Madison, WI, pp. 255–293.

14- Hassoun, M.H. 1995. Fundamentals of Artificial Neural Networks. MIT Press, Cambridge, MA.

15- Hillel, D. 2004. Introduction to environmental soil physics. Elsevier Academic Press. 494 pp. independent data set. Geoderma. 102: 275–297.

16- Kai-Hua, L., XU. Shao-Hui, W.U. Ji-Chun, J.I. Shu-Hua and  L. Qing. 2011. Assessing Soil Water Retention Characteristics and Their Spatial Variability Using Pedotransfer Functions. Pedosphere21(4): 413–422.

17- Khodaverdiloo H., M. Homaee, van Genuchten, Th. Martinus and S. Ghorbani Dashtaki. 2011. Deriving and validating pedotransfer functions for some calcareous soils. Elsevier, 399: 93-99.

18- Maier H.R. and G.C. Dandy. 2000. Application of artificial neural networks to forecasting of surface water quality variables: Issues, applications and challenges. In: Govindaraju, R. S. and Rao, A.R. (Eds). Artificial neural networks in hydrology. pp. 287-309.

19- Mayr T. and N.J. Jarvis. 1999. Pedotransfer functions to estimate soil water retention parameters for a modified Brooks-Corey type model. Geoderma, 91: 1-9.

20- Merdun, H., O. Cinar, R. Meral and M. Apan. 2006. Comparison of  artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated  hydraulic conductivity. Soil and Tillage Research, 90, 108-116.

21- Minasny B., A.B. McBratney and K.L. Bristow. 1999. Comparison of different approaches to the development of pedotransfer functions for water/retention curves. Geoderma, 93: 225-253.

22- Minasny  B. and A.B. McBratney. 2002. The Nero-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J., 66: 352-361.

23- Nelson, R.E., 1982. Carbonate and gypsum. In: Page, A.L., Miller, R.H., Keeney, D.R.(Eds.), Methods of Soil Analysis. Part 2: Chemical and MicrobiologicalProperties, second ed. Am. Soc. Agron, Madison, WI, pp. 181–198.

24- Pachepsky Y.A., D.J. Timlin and L.R. Ahuja. 1999. Estimating saturated soil hydraulic conductivity using water retention data and neural networks. Soil Sci. 164: 552-560.

25- Rahimi Lake, H., A. Akbarzadeh, and R. Taghizadeh Mehrjardi. 2009. Development of pedotransfer functions (PTFs) to predict soil physiochemical and hydrological characteristics in southern coastal zones of the Caspian Sea. Journal of Ecology and the Natural Environment, 1(7), 160-172.

26- Rajkai, K., S. Kabos and Van M.Th. Genuchten. 2004. Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil & Tillage Research, 79(2), 145-152.

27- Schaap, M.G., F.J. Leij and M.Th. Van Genuchten. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal, 62, 847-855.

28- Scheinost A.C., W. Sinowski and K. Auerswald. 1997. Regionalization of soil water retention curves in a highly variable soilscape: I. Developing a new pedotransfer function. Geoderma, 78: 129-143.

29- Shirazi, M.A. & L. Boersma. 1984. A unifying quantitative analysis of soil texture. SoilSci. Soc. Am. J. 48, 142–147.

30- Soil Survey Staff, 1999. Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys, second ed., USDA Soil Conservation Service, US Gov. Printing Office, Washington, DC. <http://soils.usda.gov/technical/classification/taxonomy>.

31- Tamari, S., J.H.M. Wosten and J.C. Ruz-suarez. 1996. Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Science Society American Journal, 60, 1732- 1741.

32- Vereecken, H., J. Feyen, J. Maes and P. Darius. 1989. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 148: 389-403.

33- Wagner, B., V.R. Tarnawski, V. Hennings, U. M¨uller, G. Wessolek and R. Plagge. 2001. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma. 102: 275–297.

34- Walkley A. and I.A. Black.  1934. An examination of the Degtjareff  method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci., 37: 29-39.

35- Wösten J.H.M, A. Lilly, A. Nemes and C. Le Bas. 1999. Development and use of a database of hydraulic properties of Euro pean soils. Geoderma, 90: 169-185.