افزایش توان جریان در لوله‌های فشار قوی انتقال آب نیروگاه‌های برقآبی با استفاده از الگوریتم اجتماع ذرات

نوع مقاله: مقاله پژوهشی

نویسنده

چکیده

به کارگیری نیروگاه­های برقآبی، یکی از راهکارهای مقابله با کمبود آب در جهان به شمار می­رود. از سویی دیگر افزایش نیروی الکتریسته تولیدی با استفاده از انرژی آب بسیار حائز اهمیت می­باشد. با توجه به هزینه بالای احداث سد و تامین بار آبی مورد نیاز نیروگاه­های برقآبی، طراحی بهینه این تاسیسات در سال­های اخیر مورد توجه قرار گرفته است. در میان اجزای تشکیل دهنده این تاسیسات، پنستاک از جایگاه ویژه­ای برخوردار است. اهمیت پنستاک به دلیل هزینه­ی بالای ساخت، نصب و نگهداری آن می­باشد طوری که بالغ بر سی درصد هزینه­های نیروگاه به ساخت این سازه هیدرولیکی اختصاص می­یابد. از این­رو طراحی بهینه آن نقش بسزایی در کاهش هزینه احداث نیروگاه­های برقآبی ایفا خواهد نمود. استفاده از روش­های بهینه­یابی فرا کاوشی برای بهینه­سازی سازه­های مختلف، یکی از مهم­ترین مباحث مطرح شده در طراحی این سازه­ها بوده است. در میان الگوریتم­های فرا کاوشی، روش بهینه­یابی اجتماع ذرات به عنوان یک ابزار قوی و مناسب در بسیاری از زمینه­ها مورد توجه بوده است. موضوع این پژوهش ارائه طرح بهینه برای بیشینه نمودن توان جریان برخوردی به توربین­های نیروگاه و کاهش افت فشار با هدف کنترل جریان­های میرا در مسیر پنستاک بوده که در این راستا الگوریتم اجتماع ذرات به عنوان مطالعه موردی انتخاب و به منظور اطمینان از صحت نتایج حاصله، جریان خروجی از پنستاک­های سد شهریار به عنوان مطالعه موردی بررسی شده است. نتایج نشان می‌دهد میزان افت انرژی در مجموع از مقدار 11/29 متر به 92/11 متر کاهش یافته که این امر خود موجب افزایش راندمان و کارایی لوله­های فشار قوی انتقال می­گردد. میزان افت فشار ناشی از تغییرات ناگهانی جریان در سیستم انتقال، قبل از بهینه­یابی 9/315 کیلوپاسکال است که با تغییر در ابعاد پنستاک، مقدار آن به 7/116 کیلوپاسکال کاهش یافته است. این امر نشان می­دهد با کاهش افت فشار، از آسیب­های ناشی از ایجاد جریان­های میرا در سیستم انتقال به شدت کاسته می­شود. همچنین توان جریان نیز از 25 مگاوات به 28 مگاوات افزایش یافته است که در مجموع معادل 11% درصد افزایش توان جریان خروجی است.

کلیدواژه‌ها


عنوان مقاله [English]

Increasing the Flow Power in High Pressure Transient Pipes of Hydroelectric Power Plants Using Particle Swarm Optimization Algorithm

نویسنده [English]

  • Nazila Kardan
چکیده [English]

Employment of hydroelectric power plants is considered as one of the strategies to overcome the water shortages in the world. On the other hand, increasing the generated electricity by using of water energy is of importance. Regarding to the high cost of construction of dam and supplying the required hydraulic head of hydro power stations, the optimum design of these stations has been considered. Penstock, among the components of these stations, has a special place. The importance of penstock is due to its high manufacturing, installation and maintenance costs which assign nearly thirty percent of the plant’s expenditures to itself. Therefore, optimal design of this hydraulic structure will play a significant role in lowering the construction costs of hydro power stations. The use of meta-heuristic optimization algorithms for optimization of different structures has been one of the most important issues in designing of these structures. Among the meta-heuristic algorithms Particle Swarm Optimization has been considered as a powerful method in many fields. The purpose of this research is to present an optima sketch to maximize the power of jet streams reaching the turbines and also reduction the pressure losses through penstocks for controlling the transient flows. The results show that the energy losses have totally been decreased from 29.11meters to 11.92meters. This reduction lead to increasing the efficiency and performance of high pressure pipes. The pressure losses due to sudden changes in flow condition (before optimization) are 315.9kpa which by optimization of the penstocks decreased to 116.7kpa. This reveals that by reduction in pressure losses, the damages caused by transient flows are greatly decreased. Also, the power of flow increased from 25MW to 28MW, which equals 11%.      

کلیدواژه‌ها [English]

  • : Flow Power
  • Particle Swarm Optimization
  • Penstock
  • Power Station
  • optimization

منابع

آزادنیا، ا. و ب. زهرایی. 1389. کاربرد الگوریتم بهینه­سازی PSO در بهینه­سازی چند هدف بهره­برداری از مخازن. نهمین کنگره ملی عمران، سمنان، ایران، اردیبهشت 89.

بی نام. 1384. دفترچه محاسباتی سد شهریار. سازمان آب منطقه­ای آذربایجان شرقی.

حاجی کاظمی، ح. 1389. بهینه­سازی عرضه و تقاضای آب شهری تبریز با تأکید بر قابلیت اعتماد با استفاده از الگوریتم توسعه یافته PSO. پایان نامه کارشناسی ارشد مهندس آب، دانشکده عمران، دانشگاه تبریز.

حسن زاده، ی. و ر.  فاضلی پایدار. 1381  کاربرد روش مشخصه در تحلیل پدیده ضربه قوچ ایستگاه پمپاژ سد نهند تبریز، مجله دانشکده فنی دانشگاه تبریز، دوره 28، شماره 3، صفحه 60-49.

سروری، م.، ح. معراجی، ر. ولی پور و ص. معراجی. 1385. کاربرد الگوریتم PSO در طراحی بهینه حجم مخازن سدها. اولین همایش ملی مدیریت شبکه­های آبیاری و زهکشی، اهواز، ایران.

سلاجقه، ج.، م. خطیبی نیا و م. مشایخی. 1387. بهینه­سازی شکل گنبدهای فضاکار یک لایه با استفاده از الگوریتم باینری جامعه ذرات اصلاح شده (BPSO). چهارمین کنگره ملی عمران، تهران، ایران، اردیبهشت 87.

لطف اللهی، م.ع. و ن. کاردان. 1392. بهینه­سازی لوله انتقال آب فشار قوی سد بتنی شهریار با استفاده از الگوریتم اجتماع مورچه­ها. نشریه دانش آب و خاک، دوره 23، شماره 1، ص 69-57 .

نورانی، و.، م.ع. کی نژاد و ن. کاردان. 1390. استفاده از الگوریتم ژنتیک برای بهینه­سازی پنستاک سدهای بتنی. نشریه عمران و محیط زیست، جلد 40، شماره 3، ص 95-85.

Andaroodi, M. R. 2006. Standardization of civil engineering works of small high head hydropower plants and development of an optimization tool. Ph.D. Thesis, Issue 1661-1179.

Anonymous. 1986. Welded steel penstocks. A Water Resource Technical Publication Engineering Monograph No.3, United State Department of the Interior  Bureau of Reclamation, Denver.

Baltar, A. M. and D. G. Fontane. 2008. Use of multi objective particle swarm optimization in water resources management. ASCE Journal of Water Resources Planning and Management, 134(3): 120-128.

Chen, D., W. Gaofeng and Ch. Zhenyi. 2008. The inertia weight self-adapting in PSO, IEEE-Proceedings of the 7th world congress on intelligent control and automation, 25–27 June, Chongging, China, 5313–6.

Dong, W. S., C. H. Dang, Z. C. Deng and D. C. Liu. 2006. Stability analysis of penstock under external pressure based on GA-NN. Chinese Journal of Applied Mechanics, 23(2): 304-307.

Flotow, A. V. 2012. Micro hydro penstock design. Oregan State University, Independent Study and Research Fellow Transcript Notation.

Fresen, M. H. and Ch. Votesch. 1983. Economic diameter of steel penstock. Transactions ACSE, 103(3): 54-62.

Gill, M. K., Y. H. Kaheil, A.M. Khalil and L. McKeeBastidas. 2006. Multi objective particle swarm optimization for parameter estimation in hydrology. Journal of Water Resources Research, 42(W07417): 14 Pages.

Izquierdo, J., I. Montalvo, R. Pérez and V. S. Fuertes. 2008. Design optimization of wastewater collection networks by PSO. Journal of Computers & Mathematics with Applications, 56(3): 777-784.

Kennedy, J. and R. Eberhart. 1995. Particle swarm optimization. In Proc. ofInternational Conference on Neural Networks, Perth, Australia, 1942-1948.

Kennedy, J. and R. Eberhart. 2001. Swarm intelligence. Morgan Kaufman Publishers.

Montalvo, I., J. Izquierdo, R. Pérez and M. M. Tung. 2008. Particle swarm optimization applied to the design of water supply systems. Journal of Computers & Mathematics with Applications, 56(3): 769-776.

Purwati, E. and H. I. Wahyun. 2010. Optimization on penstock dimension of Ample Gading hydro electrical power, Indonesia. International Journal of Academic Research, 2(6): 308-312.  

Shi, Y. and R.Eberhart. 1998a. Parameter selection in particle swarm optimization. In Proc. of the 1998 Annual Conference on Evolutionary Programming, San Diego, 591-600.

Souren, B. and R. Hadjian, 1980. Optimization and design of underground embedded penstocks. Ph.D. Thesis, Department of Civil Engineering, Canada.

Yeniay, O. 2005. Penalty function methods for constrained optimization with genetic algorithm. Journal of Mathematical and Computational Applications, 10 (1): 45-56.