Cotton Response Simulation to Dry and Salinity Stress by using of AquaCrop Model

Document Type : Original Article

Authors

1 Assistant professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

2 Assistant professor, Water Engineering Department, Hamedan Agricultural and Natural Resources Research Center, Hamedan,

3 Master of Irrigation and Drainage, PhD Student of Irrigation and Drainage, Ferdowsi University of Mashhad, Mashhad, Iran

4 Assistant Professor, Water Engineering Department, University of Birjand, Birjand,

Abstract

Currently, agriculture is a crucial support for the national food security as well as economic sustainability. Among all factors, water is the most important and limited production factor. The simulation models of yield response to the water and irrigation water salinity are expected to play an increasingly important role in the optimization of water productivity (WP) in agriculture. AquaCrop model is a powerful and valuable tool for improvement of water management in the field and calculating water productivity. In this study, canopy cover, yield, biomass and evapotranspiration of cotton were simulated by using AquaCrop model under different levels of water salinity and deficit irrigation condition. The treatments included three levels of irrigation water salinity and three levels of irrigation depth. The experiment design was laid out with split-split plot in a factorial design with three replications. Results showed that the model can simulate different parameters with high accuracy (d>0.95). By reducing the amount of irrigation water and increasing of irrigation water salinity, simulation error was increased, but simulation results were in the acceptable range. For low levels of water and salinity stress, there was no very difference in the simulation results. AquaCrop model can be valu­able tool in water and salinity management.

Keywords


جعفرآقایی، م. و م. دهقانی. 1385. تاثیر شوری آب آبیاری بر خصوصیات کمی و کیفی پنبه (ارقام B557 و تابلادیلا). نهمین کنگره علوم زراعت و اصلاح نباتات ایران، 5 تا 7 شهریور، پردیس ابوریحان دانشگاه تهران، تهران.
سپاسخواه ع.، ع. توکلی و س. ف. موسوی. 1385. اصول و کاربرد کم آبیاری. انتشارات کمیته ملی آبیاری و زهکشی ایران، 210 صفحه.
شهیدی، ع. 1387. اثر برهم کنش کم آبیاری و شوری بر عملکرد و اجزای عملکرد ارقام گندم با تعیین تابع تولید آب و شوری در منطقه بیرجند. رساله دکتری، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، 150 صفحه.
کشاورز ع. و ک. صادق­زاده. 1379. کم آبیاری بهینه و تجزیه تحلیل ریاضی و اقتصادی آن. مجله تحقیقات فنی و مهندسی کشاورزی، 5سال پنجم، شماره 17، ص 26-1.
کیانی ع. و م. کوچک زاده. 1380. راهکارهای اجرایی و مدیریتی کاربرد آب شور در کشاورزی. اولین کنفرانس ملی بررسی راهکارهای مقابله با بحران آب، 20 اسفند، دانشگاه زابل، زابل.
نجفی مود م. ح. 1386. تاثیر دو روش آبیاری شیاری و بارانی بر عملکرد و کیفیت پنبه. پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه فردوسی مشهد، 140 صفحه.
Allen, R.G., L.S. Pereira, D. Raes and M. Smith. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrig. Drain. Paper No.56, FAO, Rome, Italy, 300 pp.
Andarzian, B., M. Bannayan, P. Steduto, H. Mazraeh, M.E. Barati, M.A. Barati and A. Rahnama. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100: 1-8.
Brar, A.S. 1986. Response of upland cotton to deficit irrigation management. Sciences and Engineer, 46(7): 2122-2135.
Doorenbos, J., A.H. Kassam, C.L.M. Bentvelsen, V. Branscheid, J.M.G.A. Plusje, M. Smith, G.A. Uittenbogard and H.K. Vanderwal. 1979. Yield response to water. Irrigation and Drainage. Paper No. 33. FAO, Rome, Italy, 200 pp.
Droogers, P. and G. Kite. 2001. Simulation modelling at different scales to evaluate the productivity of water. Physics and Chemistry of the Earth, 26(11-12): 877-880.
Farahani, H.J., G. Izzi and T.Y. Oweis. 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal, 101: 469–476.
Geerts, S., D. Raes, M. Garcia, R. Miranda, J.A. Cusicanqui, C. Taboada, J. Mendoza, R. Huanca, A. Mamani,  O. Condori, J. Mamani, B. Morales, V. Osco, and P. Steduto. 2009. Simulating Yield Response of Quinoa to Water Availability with AquaCrop. Agronomy Journal, 101(3): 499–508.
Hsiao, T.C., L. Heng, P. Steduto, B. Rojas-Lara, D. Raes, and E. Fereres. 2009. AquaCrop The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101:448-459.
Kuo, Sh.F., B.J. Lin and H.J. Shieh. 2006. Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan. Agricultural Water Management, 82: 433-451.
Marinov, D., E. Querner and J. Roelsma. 2005. Simulation of water flow and nitrogen transport for a Bulgarian experimental plot using SWAP and ANIMO models. J. Contam. Hydrol. 77: 145-164.
Raes, D. 2002. Reference manual of Budget model. K. U. Leuven, Faculty of Agricultural and Applied Biological sciences, Institute for Land and Water Management, Leuven, Belgium.
Restuccia, G. 1995. Effects of irrigations regimes on the agronomic behavior of cotton cultivated in the Mediterranean region. Rivistali Agronamia, 29(2):123-131.
Saghir, A., N. Khan, M. Zafar and M. Hassan. 2002. Salt tolerance of cotton. Asian Journal of Plant Sciences. 1(6): 715-719.
Steduto, P., T.C. Hsiao and E. Fereres. 2007. on the conservative behavior of biomass water productivity. Irrigation Science, 25:189-207.
Steduto, P., T.C. Hsiao, D. Raes, and E. Fereres. 2009. AquaCrop-The FAO crop model to simulate yield response to water: I Concepts and Underlying Principles. Agronomy Journal, 101(3): 426-437.
Todorovic, M., R. Albrizio, L. Zivotic, M.T.A. Saab, C. Stöckle and P. Steduto. 2009. Assessment of AquaCrop, Crop Syst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101(3): 509–521.