Evaluation of Nitrate Dispersivity in Sandy Soil and Simulation by HYDRUS-2D

Authors

1 Assistant Professor of Ghonbad Kavous University, Water Department

2 Assistant professor, Department of Water Engineering, Razi University, Kermanshah

3 Assistant Professor, agricultural faculty, Gonbad KavousUniversity, Gonbad, Iran.

4 Graduate student, Department of Water Engineering, Razi University, Kermanshah, Iran

Abstract

Chemical fertilizers used in agriculture are sources of environmental pollution. Factors affecting the movement of salt and water in the soil profile help effective management and reduce nitrate leaching from the root zone. In the present study, NO3- dispersivity in sandy soil and simulation by hydrus2D has been investigated. In order to perform it, 5 different height of soil column 20, 40, 60, 80 and 100 cm (H1-H5) selected. Brigham model was used for calculation of dispersivity and HYDRUS software was used for simulation of NO3 movement. Results of the HYDRUS simulation indicated that the dispersivity of sandy porous media was not dependent on the height. The result of HYDRUS showed that with increase of aquifer length, dispersivity increased but it was not significant

Keywords


اژدری، خ. 1387 . شبیه‌سازی توزیع رطوبت درخاک در سیستم آبیاری قطره‌ای با استفاده از مدلHYDRUS-2D . مجله علوم کشاورزی و منابع طبیعی،42(4):11-50.
     فراستی، م. و م. سیدیان. 1392. اثر فاصله انتقال بر انتشارپذیری کلرید سدیم با استفاده از نرم‌افزار HYDRUS 2D. نشریه آب و خاک مشهد، 7(4): 831-823.
Al-Tabbaa, A. and J. M.  Ayotamuno. 2000. One dimensional solute transport in stratified sands at short travel distances.  Journal of Hazardous Materials.  73: 1-15.
Andersona, S. H., B. Haeffnerb and R. L. Peytonc. 2012. Influence of Scale on Chemical Dispersivity in Geomedia, Procedia Computer Science 12:242 – 247.
    Ayotamuno, J. M. 1998. Cotaminant Transport and immobilization in Stratified Sands. Ph. D Thesis, University of Birmangham, UK.
    Besharat, S., A. H., Nazemi, A. A. Sadroldini, and S. Shahmorad. 2012. Applications of HYDRUS and the Proposed SWMRUM Software in Simulating Water Flow with Root Water Uptake through Soils. Water and Science Journal. 21(4):121-137
       Comeira, M. R., R. M. Fernando and L. S.  Pereira. 2003. Monitoring water land NO
-N in irrigated maize fields in the Sorraia Watershed, Portugal. Agricultural Water Management, (60): 199-216.
   Haan, P. K. and R. W. Skaggs 2003. Effect of Parameter Uncertainty on DRAINMOD Predictions:   II.
    Hamilton, P. A., and D. A. Helsel. 1995. Effects of agriculture on ground-water quality in five regions of the UStates. Ground Water, (33): 217-226.
    Huang, G., Q. Huang and Z. Hongbin. 2006. Evidence of one-dimensional scale-dependent fractional advection–dispersion, Journal of Contaminant Hydrology.85 (1-2):53-71
    Moazed, H., E. Maroufpour, H. A.  Kashkouli and J.M.V.  Samani. 2009. Laboratory Scale Effect of Aquifer Thickness on Dispersivity of Porous Media. Journal of Applied Sciences 9(3):542-548.ISSN1812-5654.
   Simunek, J., M. Sejna and M. Th. Van Genuchten. 2006. The HYDRUS software package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, User Manual Version 1.0, PC-Progress, Prague, Czech Republic.
    Tziatzios, G., P. Sidiropoulos, L. Vasiliades, N. Mylopoulos and A. Laboratory. 2015. Contamination in lake   karala aquifer. Proceedings of the 14th International Conference on Environmental Science and Technology   Rhodes, Greece.