پیش‌بینی بارش ماهانه با مدل ترکیبی شبکه ‌عصبی مصنوعی-موجک و مقایسه با مدل شبکه‌ عصبی ‌مصنوعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مهندسی منابع آب ،دانشکده علوم آب، دانشگاه شهید چمران

2 استادیار گروه هیدرولوژی و منابع آب دانشگاه شهید چمران

3 مهندسی منابع آب ،دانشکده علوم آب، دانشگاه شهید چمران اهواز

4 ، معاون طرح و توسعه شبکه‌های آبیاری و زهکشی سازمان آب و برق خوزستان

چکیده

بدون شک اولین قدم در مدیریت رودخانه پیش­بینی بارش سطح حوضه آبریز می­باشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدل­ها هنوز هم به منظور تعریف چنین پدیدة پیچیده­ای در زمینه مهندسی هیدرولوژیک توسعه داده می­شوند. اخیراً شبکه­های ­عصبی ­مصنوعی به عنوان یک برون­یابی و درون‌یابی غیرخطی گسترده توسط هیدرولوژیست­ها مورد استفاده قرار می­گیرد. در پژوهش حاضر، تجزیه و تحلیل­ موجک به صورت ترکیب با شبکه عصبی مصنوعی و مقایسه با شبکه­ عصبی ­مصنوعی برای پیش­بینی بارش ایستگاه وراینه در شهرستان نهاوند انجام شد. برای این منظور، سری زمانی اصلی با استفاده از تئوری موجک به چندین زیرسیگنال زمانی تجزیه شد، پس از آن این زیرسیگنال­ها به عنوان داده­های ورودی به شبکه­ عصبی­ مصنوعی برای پیش­بینی بارش ماهانه استفاده شد. نتایج به دست آمده نشان داد که با توجه به ضریب همبستگی 92/0 و میانگین مربعات خطای 002/0 مدل ترکیبی شبکه­ عصبی مصنوعی-موجک، عملکرد این مدل نسبت به مدل شبکه عصبی مصنوعی با ضریب همبستگی 75/0 و میانگین مربعات خطای 003/0 بهتر می­باشد و می­تواند برای پیش­بینی بارش کوتاه مدت و بلند مدت استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting Monthly Precipitation Using a Hybrid Model of Wavelet Artificial Neural Network and Comparison with Artificial Neural Network

نویسندگان [English]

  • Abazar Solgi 1
  • Heydar Zarei 2
  • Amir Pourhaghi 3
  • Hamidreza khodabakhshi 4
1 Ph.D. Student of Water Resources Engineering, Faculty of Water Sciences, Shahid Chamran University of Ahvaz.
2 Asistant Prof, Dep. of Hydrology and Water Resources, Shahid Chamran University of Ahvaz, Iran.
3 Ph.D. Student of Water Resources Engineering, Faculty of Water Sciences, Shahid Chamran University of Ahvaz. Pourhaghiamir@yahoo.com
4 M.Sc. of Agriculture, Deputy Director in planning and development of irrigation and drainage networks Khuzestan Water
چکیده [English]

Doubtlessly the first step in a river management is precipitation prediction of the watershed area. However, considering high-stochastic property of the process, many models are still being developed in order to define such a complex phenomenon in the field of hydrologic engineering. Recently Artificial Neural Network (ANN) is extensively used as a non-linear inter-extrapolator by hydrologists. In the present study, Wavelet Analysis combined with artificial neural network and compared with Artificial Neural Network to predict the precipitation of Varayeneh station in the city of Nahavand. For this purpose, the original time series using wavelet theory decomposed to multi sub-signals.After this these sub-signals are used as input data to Artificial Neural Network to predict monthly Precipitation. The results showed that according to correlation coefficient of 0.92 and mean square error of 0.002 for the hybrid model of Wavelet- Artificial Neural Networks, the performance of this model is better than Artificial Neural Network with correlation coefficient of 0.75 and mean square error of 0.003 and can be used for short and long term precipitation prediction.

کلیدواژه‌ها [English]

  • Keywords: Artificial Neural Networks
  • Hybrid Model of Wavelet – Artificial Neural Networks
  • Nahavand City
  • Monthly Precipitation Prediction

طوفانی، پ.، ا. مساعدی، ا. فاخری فرد.1390. پیش‌بینی بارش با استفاده از نظریه موجک. نشریه آب و خاک (علوم و صنایع کشاورزی) جلد 25، شماره 5، ص 1226-1217.

کماسی، م. 1386. مدل‌سازی بارش- رواناب با استفاده از مدل ترکیبی موجک- شبکه­عصبی­مصنوعی. پایان نامه کارشناسی ارشد، دانشگاه تبریز.

عبقری، ه. 1387. بررسی روش‌های پیش­بینی هوشمند مبتنی بر شبکه های عصبی موجکی و مدل‌های خود همبستگی دبی ماهانه رودخانه. پایانه نامه دکتری آبخیزداری- منابع آب، دانشگاه تهران.

 

 

 

Adamowski, J., K. Sun. 2010. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology, 390: 85-91.

Asadi, S., J. Shahrabi, P. Abbaszadeh, S. Tabanmehr. 2013. A New Hybrid Artificial Neural Networks for Precipitation–Runoff Process Modeling. Neurocomputing: 05-23.

Chua, L. H. C., T. S. W. Wong. 2010. Improving event-based Precipitation–runoff modeling using a combined artificial neural network–kinematic wave approach. Journal of Hydrology, 390(1–2): 92-10.

Fofola, G., E.  Kumar.  P (eds). 1995. Wavelet in geophysiscs. Academic New York.

Hamzaçebi, C. 2008. Improving artificial neural networks’ performance in seasonal time series forecasting. Information Sciences, 178(23): 4550-455.

Kisi, O. 2008. Stream flow forecasting using neuro-wavelet technique. Hydrological Pro-cesses, 22: 4142–4152.

Mallat, S. G. 1998. A wavelet tour of signal processing, San Diego.

Nourani, V., M. T. Alami. , M. H. Aminfar .2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipi-tation. Engineering Applications of Artificial Intelligence, 22(3): 466-472.

Nourani, V., M. Komasi and A. Mano .2009. A Multivariate ANN-Wavelet Approach for Precipitation–Runoff Modeling. Water Resour Manage, 23: 2877–2894.

Nourani, V., Ö. Kisi, M. Komasi. 2011. Two hybrid Artificial Intelligence approaches for modeling Precipitation–runoff process. Journal of Hydrology, 402: 41–59.

Nourani, V., M. Parhizkar. 2013. Conjun-ction of SOM-based feature extraction method and hybrid wavelet-ANN approach for Precipitation–runoff modeling. Journal of Hydroinformatics, 15.3: 829-848

Riad, S., J. Mania, L. Bouchaou, Y. Najjar. 2004. Precipitation-runoff model usingan artificial neural network approach. Mathem- atical and Computer Modelling, 40(7-8): 839-846