مقایسه کارآیی مدل‌های درختی در محاسبه ضریب پراکندگی طولی آلاینده‌ها در آبراهه‌های مستقیم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب دانشگاه کشاورزی و منابع طبیعی رامین خوزستان،

2 استادیار، گروه مهندسی آب دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

3 استاد دانشکده مهندسی علوم آب، گروه سازه‌های آبی، دانشگاه شهید چمران، اهواز، ایران

چکیده

چکیده
مدل­سازی پیشروی آلاینده‌ها در آبراهه‌های طبیعی یکی از مهم‌ترین مسائل محیط زیست است. ضریب پخشیدگی طولی یکی از پارامترهای اساسی در مدل­سازی انتشار آلودگی­ها به‌حساب می‌آید. طی پژوهش‌های صورت گرفته توسط محققان مختلف روابط متعددی جهت برآورد این ضریب ارائه شده است که اغلب این روابط به‌صورت تجربی و یا نیمه تجربی به­دست آمده­اند. با این وجود، نیاز به روش­های دقیق­تر تخمین ضریب پخشیدگی طولی همچنان احساس می­شود. در این تحقیق جهت تخمین این ضریب، مدل­های داده­کاوی با توجه به اطلاعات هیدرولیکی و هندسی رودخانه­ها توسعه یافته است. بر این اساس الگوریتم­های درختی M5، CART و برنامه‌ریزی ژنتیک (GP)مورد استفاده قرار گرفت. جهت مقایسه کارایی مدل­ها با معادلات موجود از پارامترهای آماری جذر میانگین مربعات خطا، میانگین خطای مطلق و نسبت اختلاف استفاده گردید. نتایج تحلیل­های آماری نشان داد که مدل­های داده­کاوی می­توانند ضریب پخشیدگی طولی را با دقت بهتر برآورد نمایند. مدل CART با وجود دقت زیاد در مرحله آموزش، در مرحله صحت سنجی از دقت کمتری برخوردار بوده است. مدل‌هایM5  و GP به ترتیب دارای جذر میانگین مربعات خطای 41/0 و 44/0 و معیار دقت 61% و 62% بوده و در مقایسه با روابط تجربی موجود از دقت بیشتری برخوردار می‌باشند. با توجه به اختلاف ناچیز میان این دو مدل و سادگی مدل ارائه شده توسطM5 ، از این مدل می­توان جهت برآورد ضریب پراکندگی طولی در رودخانه­ها استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Tree Models Performance for Estimation of Longitudinal Dispersion Coefficient in Straight River

نویسندگان [English]

  • Hosein Nezaratian 1
  • Javad Zahiri 2
  • Mahmood Kashefipour 3
1 M. Sc., Water structures, Khuzestan Ramin Agriculture and Natural Resources University
2 Assistant Professor, Department of Water Engineering, Khouzestan Ramin Agriculture and Natural Resources University
3 2Professor, Faculty of Water Science Engineering ,ShahidChamran University
چکیده [English]

 
Abstract
Modeling pollution transmission in rivers is an important subject in environmental studies. Longitudinal dispersion coefficient is one of the key factors in the modelling of lateral dispersion of pollutants. Several researchers have attempted to estimate this coefficient using empirical and semi-empirical methods. However, robust models that can accurately estimate longitudinal dispersion coefficient in river streams are still required. In this study, data driven models were developed using the hydraulic and geometric parameters of rivers. The classification and regression tree (CART), M5 and genetic programming (GP) were used for this purpose. The models performances were then compared quantitatively with those of existing ones using accuracy parameters such as root mean square error (RMSE), mean absolute error (MAE) and discrepancy ratio (DR). The results illustrated that data driven models outperform the existing formulae in term of accuracy. CART model outperform other models in training step, but its performance decrease for testing data. M5 and GP models have RMSE of 0.41 and 0.44 and accuracy of 61% and 62%, respectively. According to small difference between M5 and GP performances, and simple structure of M5 algorithm, this model can be used for estimating longitudinal dispersion coefficient in streams.

کلیدواژه‌ها [English]

  • Keywords: Pollution Transmission
  • Longitudinal Dispersion Coefficient
  • CART
  • GP
  • M5

منابع

ظهیری، ج. 1394. کاربرد مدل‏های ناپارامتریک CART و M5 در محاسبه عمق آبشستگی اطراف پایه‏های پل. فصلنامه علمی پژوهشی مهندسی آبیاری و آب ، شماره 20، ص 50-35.

Breiman, L., Friedman, J., Olshen, R.  and Stone, C. 1984. Classification and Regression Trees. Chapman & Hall/CRC Press, Boca Raton, FL.

Chatila, G. J. 1997. Modeling of pollutant transfer in compound open channels. PhD
Dissertation, University of Ottawa, Ontario, Canada.

Deng, Z.Q.,  Bengtsson, L., Singh, V. P., et al. 2002. Longitudinal dispersion coefficient in single-channel streams. Journal of Hydraulic Engineering. 128 (10): 901-916.

Etemad-Shahidi,  A and  M. Taghipour. 2012. Predicting longitudinal dispersion coefficient in natural streams using M5′ model tree. Journal of Hydraulic Engineering, 138(6): 542-554.

Etemad-Shahidi, A and N. Ghaemi. 2011. Model tree approach for prediction of pile groups scour due to waves. Ocean Engineering, 38: 1522–1527.

Haghiabi, A. H. 2016. Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines. Journal of Earth System Science, 125: 985-995.

Kashefipour, M.S., Falconer, R.A. 2002. Longitudinal dispersion coefficients in natural channels. Water Res. 36 (6): 1596–1608.

Koza, J.R. 1992 . Genetic Programming: on the programming of computers by means of natural selection.Cambridge, MA: MIT Press.

Li, Z.H., Huang, J., Li, J. 1998. Preliminary study on longitudinal dispersion coefficient for the gorges reservoir. In: Proceedings of the Seventh International Symposium Environmental Hydraulics, 16e18 December, Hong Kong, China.

Noori, R., Karbassi, A., Farokhnia, A and Dehghani, M. 2009. Predicting the longitudinal dispersion coefficient using support vector machine and adaptive Neuro-Fuzzy inference system techniques; Environmental Engineering Science. 26(10):1503–1510.

Papadimitrakis, I., and Orphanos, I. 2004. Longitudinal dispersion characteristics of rivers and natural streams in Greece. Water, Air, & Soil Pollution, 4(4–5): 289–305.

Quinlan, J. R. 1992. Learning with continuous classes. Proc., 5th Australian Joint Conf. on Artificial Intelligence, World Scientific, Singapore, 343–348.

Rutherford, J.C. 1994. River Mixing. John Wiley, Chichester, U. K.

Sattar, A. M. A and Gharabaghi B .2015. Gene expression models for prediction of longitudinal dispersion coefficient in streams; Journal of Hydrology. 524: 587–596.

Seo, I and  Baek, K .2004 .Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams; Journal of Hydraulic Engineering, 130(3): 227–236.

Seo, I and Cheong, T. 1998 .Predicting longitudinal dispersion coefficient in natural streams; Journal of Hydraulic Engineering, 124(1): 25–32.

Tayfur, G., Singh, V.P. 2005. Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. Journal of Hydraulic Engineering, 131 (11): 991-1000.

Wang, Y., and Witten, I. H. 1997. Induction of model trees for predicting  continuous classes. Proc. of the Poster Papers of the European Conf. on Machine Learning, Univ. of Economics, Faculty of Informatics and Statistics, Prague, Czech Republic