تدوین منحنی‌های فرمان بهره‌برداری مخزن دو سد بوکان و مهاباد با الگوریتم PSO

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار رشته آبیاری و زهکشی دانشکده کشاورزی دانشگاه بوعلی سینا همدان

2 آبیاری و زهکشی دانشگاه بوعلی سینا، همدان.

چکیده

چکیده
در این مطالعه، از الگوریتم بهینه­سازی  PSO برای استخراج منحنی فرمان بهره‌برداری مخازن دو سد بوکان و مهاباد، با هدف تامین نیازهای شرب، کشاورزی و محیط‌زیست استفاده گردید. برای تبیین رفتار حاکم بر مخزن هر دو سد، دو معادله خطی درجه یک و غیرخطی درجه دو در اجرای الگوریتم PSO به‌کار گرفته شد. بهترین جواب در اجرای هشتم با 10 ذره و 15000 تکرار برای سد بوکان از مدل خطی درجه یک با حداقل مقدار تابع هدف 4/138 حاصل شد. به­همین ترتیب برای سد مهاباد با 10 ذره و 70000 تکرار و اعمال مدل غیرخطی درجه 2 در اجرای سوم  با مقدار تابع هدف 7/749 به­عنوان مدل بهینه به‌دست آمد. نتایج نشان داد مجموع میانگین درازمدت آب ورودی طی دوره‌های تر و خشک به مخزن سد بوکان 1506 و سد مهاباد 3/269 میلیون مترمکعب بود. از طرفی در سد بوکان طی دوره خشک کمبودهای آب کشاورزی و محیط زیست طی ماه­های مهر تا شهریور به­ترتیب 8/17، 48/45، 0/65، 9/51، 09/51، 24/50، 95/36، 35/67، 05/68، 30/67 و 65/60 درصد مشاهده شد. در سد مهاباد نیز در ماه­های مهر و آبان 08/44 و 2/55 و در ماه­های فروردین تا شهریور 22/26، 25/18، 24/19، 79/20، 92/24 و 86/14 درصد کمبود آب وجود داشت. بدین ترتیب حجم رهاسازی آب در سال­های خشک و نرمال برای اهداف شرب کامل و برای اهداف کشاورزی و محیط زیست کمتر از نیاز بود. از طرفی بیشینه کمبود در دوره نرمال برای سد بوکان 57 درصد در ماه تیر و در سد مهاباد 40 درصد در ماه مهر بود. در مجموع می‌توان چنین اظهار داشت که بخشی از کمبودهای کشاورزی و محیط زیست ناشی از کمبود جریان ورودی به پشت دریاچه سدها و بخشی نیز ناشی از تامین کامل نیازهای شرب است. در حالی­که در سال تر به­واسطه زیاد بودن جریان ورودی به دریاچه سدها همه بخش­ها در کلیه ماه­ها از آب کافی برخوردار بوده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Extraction the curves command of Bukan and Mahabad dam reservoir using PSO algorithm

نویسندگان [English]

  • Hamid zareabyaneh 1
  • Bahareh Abdollahzadeh 2
  • Sahar Palangi
1 Associate Professor of Irrigation and Drainage Eng., Agriculture Faculty, Bu-Ali Sina University, Hamedan.
2 Irrigation and Drainage, Bu-Ali Sina University, Hamedan,Iran.
چکیده [English]

 
Abstract
In this study, PSO optimization algorithm was used to extract curves command of two Bukan and Mahabad dam reservoirs. The purpose was supplying of  water need for drinking, agriculture and environment during specified period. Two linear and non-linear quadratic equations were used in the implementation of the PSO algorithm to explain behavior of two dams. The best answer was achieved from eighth implementation with 10 particles and 15,000 iterations for Bokan dam from linear 1 degree model with minimum value of target function 138.4 and also as an optimal model for Mahabad Dam in the third run with 10 particles and 70,000 iterations and applying a non-linear 2 degree model with 749.7 value of target function. The results showed that total long-term average inflow was 1506 and 269.3 million cubic meters during the wet and dry periods for Bukan and Mahabad reservoir, respectively. However, water shortages  were 17.8, 45.48, 65.0, 51.9, 51.9, 50.24, 36.95, 67.35, 68.05 and 60.65, in agriculture and environment sections in Bokan dam at dry periods during October and September, respectively. Also, water shortages was 44.08 and 55.2 in Mahabad dam  in October and November, and 26.22, 18.25, 19.24, 20.79, 24.92 and 14.86 % of in April and September. Thus the release of water was complete for drinking purposes  in the dry and normal years and was less than required for agriculture and the environment  purposes. Also maximum deficit was 57 and 40 % in July and October for Bukan and Mahabad, respectively. Overall it can be said That, part of the shortage of agriculture and environment caused by the lack of inflow to the lake of the dams and partly is due to completely supply drinking needs. While all sectors in all months have had enough of the water in wet year due to the high inflow into the lake of the dams.

کلیدواژه‌ها [English]

  • Keywords: Particle Swarm Optimization
  • The Society Particles
  • Collective Behavior
  • Movement of Birds and Fishes

 

منابع

آزادنیا، ا. و ب. زهرایی. 1389.کاربرد الگوریتم بهینه­سازی PSO در بهینه­سازی چندهدفه بهره­برداری از مخازن سدها. پنجمین کنگره ملی مهندسی عمران. 14 تا 16 اردیبهشت 1389، دانشگاه فردوسی مشهد. ایران.

اکبری فرد، س.ک. قادری، ب.، بختیاری.. 1394. تدوین سیاستهای بهرهبرداری بهینه از سامانه مخازن در حوضه آبریز گرگانرود با استفاده از الگوریتم جستجوی گرگ .(WSA) فصلنامه علمی پژوهشی مهندسی آبیاری و آب. 6(21): 75-90.

امامی تبریزی، س.،ج.، موسوی، ر.، افضلی. 1390. PSO-MODSIMP: مدل بهینه سازی-شبیه سازی در طراحی و بهره برداری بهینه از سیستم های چندمخزنه برقابی. نشریه مهندسی عمران و نقشه برداری. 45(7): 753-762.

خاشعی سیوکی، ع.،ب،. قهرمان، م.، کوچک زاده. 1393. تعیین الگوی کشت بهینه برای جلوگیری از افت آب زیرزمینی با الگوریتم PSO. مجله پژوهش آب ایران. 8(14): 137-148.

رمضانی موزیرجی، ف.،.م. یعقوبی. 1388. الگوریتم کیاتیک بهینه­سازی پرندگان. اولین کنفرانس ملی و مهندسی نرم­افزار ایران. آموزشکده فنی و حرفه­ای سما. رودهن. ص. 414-419.

زینلی، م.ج.، محمدرضا پور،.ف. فروغی.. 1394. ارزیابی الگوریتمهای ازدحام ذرات، ژنتیک و سیستم مورچگان پیوسته در بهرهبرداری بهینه از مخزن سد درودزن. نشریه دانش آب و خاک. 25(3): 27-38.

فلاح مهدی­پور، ا.، ی. ویبلوری یزدلی، ی. و ا. بزرگ حداد. 1387. استخراج منحنی فرمان بهره­برداری مخزن دز براساس الگوریتم PSO، سومین کنفرانس مدیریت منابع آب ایران، دانشگاه تبریز.

معراجی، س. ح.، ولی­پور، ر. و س. ص. معراجی. 1385. بهینه­سازی ابعاد انحراف سدها براساس ریسک با استفاده از الگوریتم PSO. مجله علمی دانشجویان. دانشکده مهندسی عمران. 35: 36-31.

منعم، م .ج. و م.ع. نوری. 1389. کاربرد الگوریتم بهینه سازی PSO در توزیع و تحویل بهینه آب در شبکه­های آبیاری.مجله آبیاری و زهکشی ایران. 1 (4): 82-73.

Baltar A.M., and Fontane D.G. 2006. A multiobjective particle swarm optimization model for reservoir operations and planning. Joint International Conference on Computing and Decision Making in Civil and Building Engineering. June 14-16. Montréal, Canada.

Baltar A.M., and Fontane D.G. 2006. A generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality, in Hydrology Days.  Fort Collins, Colorado, March 2006.

Baltar, A. M., & Fontane, D. G. (2008). Use of multiobjective particle swarm optimization in water resources  anagement.
ASCE Journal of Water Resources Planning and Management, 134(3), 257–265.

Blum, C. and A. Roli .2003. Metaheuristic in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys 35(3): 268-308.

Cyriac, R. & Rastogi, A. K. (2013). An overview of the applications of particle swarm in water resources optimization,
Proceedings of Seventh International Conference on BioInspired Computing: Theories and Applications (BIC-TA
2012), advances in intelligent systems and computing, (202), 41–52.

Montalvo I., Izquierdo J., Perez R., and Tung M. 2008. Particle Swarm Optimization applied to the design of water supply systems, Computers and Mathematics with Applications, 56 (3): 769-776.

Izquierdo, J., Montalvo, I., Perez, R., and Fuertes, V. 2008. Design optimization of wastewater collection networks by PSO. Computers and Mathematics with Applications 56 (3): 777-784.

Kennedy, J. and R. C. Eberhart .1995. Particle Swarm Optimization. Proceedings of the IEEE International Joint Conference on Neural Network: 1942-1948.

Kumar, D. N., & Reddy, M. J. (2007). Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and  anagement, 133(3), 192– 201.

Meraji. S. H., Afshar, M.H., and Afshar. A. 2005. Reservoir Operation by Particle Swarm Optimization Algorithm.7th International Conference of Civil Engineering. Icce7th. Tehran. Iran.

Metropolise, N., Rosenbluth, A., Teller, A., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21: 1087-1092.

Montalvo, I., Izquierdoa, J., Pereza, R., and Tungb, M.M. 2008. Particle Swarm Optimization applied to the design of water supply systems, Computers and Mathematics with Applications. 56: 769–776.

Reddy, M.J and Kumar, D.N .2007. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation. Hydrological Processes, 21: 2897-2909. Doi: 10.1002/hyp.6507.

Ritzel, B., Ebeart, J. W. and Ranjithan, S. 1994.Use genetic algorithms to solve a multiple objective ground water pollution problem, Water Resour. Res., 30(5): 1589-1603.

Suribabu. C. R., and Neelakantan. T. R. 2006. Design of water distribution networks using particle swarm optimization. Urban Water J. 3 (2): 111-120.

Wardlaw, R. and M. Sharif .1999. Evaluation of genetic algorithms for optimal reservoir system operation. Journal of Water Resources Planning and Management, ASCE 125(1): 25-32.