تدوین منحنی‌های فرمان بهره‌برداری مخزن دو سد بوکان و مهاباد با الگوریتم PSO

حمید زارع ایبایه، بهاره عبداله، سحر بدلکنی

تاریخ ارسال: 24/02/1394
تاریخ پذیرش: 24/02/1396

چکیده
در این مطالعه، برای استخراج منحنی فرمان بهره‌برداری مخزن دو سد بوکان و مهاباد، با هدف تامین نیازهای شبک شرکت کشاورزی و محیط‌زیست استفاده گردید. برای تنظیم رفتار حاکم بر مخزن هر دو سد، مدل‌سازی خطي درجه یک و غیرخطی درجه دو در اجرای الگوریتم PSO به کار گرفته شد. بهترین جواب در اجرای هشتم با 10 دو و 15000 تکرار برای سد بوکان از مدل خطی درجه یک با حداکثر مقدار تابع هدف 158/4 حاصل شد. به‌همین ترتیب برای سد مهاباد با 10 دو و 20000 تکرار و اعمال مدل غیرخطی درجه 2 در اجرای سوم با مقدار تابع هدف 194/27 بینجواب مدل بهینه بود. نتایج نشان داد مجموع میانگین درآمدت آب ورودی طی دوره‌های تر و خشک به مخزن سد بوکان 1508 و سد مهاباد 1268 میلیون مترمکعب بود. از طرفی در سد بوکان طی دوره خشک کمپوده‌ای آب کشاورزی و محیط زیست سطه ماهیان مهر تا شهریور بین‌تیم 17/8 و 18/845 به کمپود آب وجود نداشت. در سال‌های ۱۳۸۴ و ۱۳۸۷ و در ماههای فوروردین تا شهریور 1372-1373-1374-1376-1379-1380 و 1384 درصد کمپود آب و وجود ندارید. بنابراین حجم حرج راهاسازی آب در سال‌های خشک و نرمال برای اهداف کشاورزی و محیط زیست سال‌ها کمتر از نیاز بود. از طرفی بیشترین کمپود در دوره‌های تر ماههای 50 درصد در ماهه مهر بود در مجموع میانگین چنین اظهار داشت که بخشی از کمپوده‌ای کشاورزی و محیط زیست ناشی از کمپود جریان ورودی به پشت دریاچه سدها و بخشی ناشی از تامین کامل نیازهای شبب است. در حالی که در سال‌های ۱۳۷۹ و ۱۳۸۱ و ۱۳۸۲ و ۱۳۸۳ و ۱۳۸۵ بودن نرمال ورودی به پشت دریاچه سدها هم بخشی از کلیه ماهیا از آب کافی برخوردار بودند.

واژه‌های کلیدی: بهینه‌سازی دسته‌ ذرات، جامعه ذرات، رفتار جمعی، حرکت پرندگان و ماهیان

zareabyaneh@gmail.com

1. دانشیار گروه مهندسی آب دانشگاه بیرجند، سیستان و بلوچستان.
2. کارشناس ارشد مهندسی آبیاری و زهکشی دانشگاه بیرجند، سیستان و بلوچستان.
3. دانشجوی دکترای آبیاری و زهکشی دانشگاه بیرجند، سیستان و بلوچستان.
فصلنامه علمی پژوهشی مهندسی آب‌یاری و آب
سال هشتم • شماره سیاموزمندی 1396

مقدمه

میزان آب‌های رودخانه‌ها با بعنوان اصلی ترین منابع آب سطحی از نظر زمانی با مقدار نیازهای جهانی ندارد. جهت استفاده مناسب و کاهش ریسک، ایجاد سدهای مخزنه با ریشه قابلیت‌های استردادی و توسعه سدهای راهنما، اکنون شیب‌سازی و بهینه‌سازی تأثیر سازه‌های مانند سدها در مدت‌یابی زمانی و توسعه آب‌های بهینه‌سازی است که بی‌کیفیتی مشکلات در حال و آینده به ورود آن‌ها میان‌ماره‌ای مورد توجه در مدت‌یابی منابع آب از انرژی انرژی که بی‌کیفیتی محور فریاد، ریسک است پیامد باعث ایجاد ریسک است. تصمیم‌گیری برخوردار است به دین نیازهای بهینه‌سازی توسعه سدهای تحلیل و غیر از روش‌های تکاملی چندنوازی با بعنوان یک راه حل بهبودهای است برای کیفیت‌های از مکانیزم مفاهیت، نظر آزمایش‌های اثرات، کاوش مدل سیستم‌های تپکاری، تولید انرژی گره سیستم و ایجاد نیازهای مصرفی می‌باشد که با تعیین تابع هدف بحران‌های بهینه از انرژی به روش کمک‌های شیب‌های سازی و بهینه‌سازی چندنوازی می‌توان به اهداف فواید استفاده.

الگوریتم‌های تکاملی، الگوریتم‌های جستجوی تصادفی هستند که جواب بهینه در آن‌ها به تکامل بیولوژیکی یا

1 Particle Swarm Optimization
2 Genetic Algorithm
3 Artificial Neural Network
فصلنامه علمی پژوهشی مهندسی ایبرای و آب
سال هشتم • شماره سی • مهر 1396

مواد و روش‌ها

در این مطالعه یک مدل بهینه‌سازی چندهدفه با فاصله بین دستورالعملی برای دوره‌های همان‌بندی اجرا شد.

هدف مدل بهینه‌سازی بهبود سازیهای از سه‌سازی بهبود مکانیزاسیون و کاهش زمان مصرفی آب شرب، آب کشاورزی و محیط زیست است.

سد مخزنی یکان با حجم مخزن 50 میلیون متر مکعب، ارتفاع ۵۰ متر، طول تاج ۷۲ متر و شیب سیلاب ۴۰ درجه‌ای قرار گرفته است. این سد به منظور کاهش آب کشاورزی دست می‌شود و با اتصال به سیستم هیدروليک، بهره‌گیری از انرژی آب به کشاورزی می‌رساند.

در حال حاضر علاوه بر تأمین نیازهای سازمانی مذکور، وظیفه را به جویایش بهره‌گیری از این اثبات رسانده، بهره‌گیری از این سد، تولید انرژی برای خود، تأمین نیاز بیشتر به برق ایجاد و کاهش دما و نیز بهبود کیفیت آب را به دست می‌آورد.

یکی از روش‌های بهینه‌سازی پژوهشی موفق بهترین دسته‌بندی گروه کارگری که در ایران در سال ۱۳۸۹ انجام شد. این شکل از هدف بهینه‌سازی در مطالعه موشک و ماده فلزی، بهبود کیفیت برق و کاهش دما و نیز بهبود کیفیت آب را به دست می‌آورد.

در این مطالعه، در بخش گزارشی بهره‌گیری از مدل پژوهشی با سه دستگاه طراحی، بهبود در کیفیت برق و کاهش دما و نیز بهبود کیفیت آب را به دست می‌آورد.

نکات خاتمه‌ی مطالعه: این مطالعه بهبود کیفیت برق و کاهش دما و نیز بهبود کیفیت آب را به دست می‌آورد.

وضعیت محیطی و محیط زیست: در این مطالعه، در بخش گزارشی بهبود در کیفیت برق و کاهش دما و نیز بهبود کیفیت آب را به دست می‌آورد.
فصلنامه علمی پژوهشی مهندسی آبیاری و آب
سال هشتم • شماره سی ام • زمستان ۶۹۳۱

تأمین آب شرب شهره‌های تبریز، سقز، آب کشاورزی دشت
رحمخان و دیگر مناطق را دارد. به همین ترتیب، سد
مخزنی مهاباد با حجم مخزن ۲۲۳ میلیون متر مکعب،
ارتفاع ۴۶۵ متری، طول ناجی ۲۰۰ متر، از نوع سیستم‌های با
هسته‌ای برای بزرگ، رودخانه‌های مهاباد در طول
برخی قرار داده‌اند. این سد نیازی به
کنترل سیلاب و رودخانه‌های مهاباد، تأمین آب شرب شهر
مهاباد، آب کشاورزی منطقه و تأمین بخشی از نیروی
برق آبی، کشور طرحی و احداث گردید.

در این مطالعه برای تحلیل سیستم ذخیره‌ای مخازن
سدها و همچنین دفتر پژوهشی آن‌ها، از داده‌های ۴۹ ساله
طبقه‌بندی جریان‌های مهاباد، بهره‌برداری از سیستم‌های
۱۳۷۵ و داده‌های ۲۷ ساله طبقه‌بندی جریان‌های مهاباد
روندخانه‌های مهاباد، طی سال‌های ۱۳۷۵-۱ نمونه‌برداری گردیده.

برای توجه به تغییرات بسیاری از حدود مجموع
میدان فاصله متوسط برخی از میزان‌های وابسته دست
بطور زمانی مورد نظر فعالیت کارکردی استفاده شد.

طراحی گردید.

\[
\begin{align*}
Min(f) &= \max \left(S_t - D_t, 0 \right)^2 \\
S_{t+1} &= S_t + I_t - R_t \\
S_{\text{min}} &\leq S_t \leq S_{\text{max}} \\
S_t &= S_{\text{min}}
\end{align*}
\]

که در آن \(R_t\) میزان تقاضای مصرفی، \(D_t\) میزان بهره‌برداری را نمایان می‌کند. این مقدار بر اساس تغییرات بسیاری از حدود مجموع
میدان فاصله متوسط برخی از میزان‌های وابسته دست.

بطور زمانی مورد نظر فعالیت کارکردی استفاده شد.

\[
q_y = \frac{Q_y - Q_y', S_y}
\]

در شاخص فوق مقدار 0.5-1 به عنوان سال خاک، مقا در 0.5-1 به عنوان سال
سال تر و مقا در 0.5-1 به عنوان سال
(های) نرمال می‌شود.

برای استخراج منحنی‌ها، ابتدا میزان جریان
ورودی به سد تعبیه شده و سپس با استفاده از
توسط الگوریتم PSO در نرم‌افزار برناک‌نویسی MATLAB
مدلی با کمترین مقدار تابع هدف به‌دست‌آمده.

\[
R(t) = f_2(S_t, I_t) = a_t S_{t+1}^2 + b_t I_t^2 + c_t S_t + d_t I_t + e_t
\]

\[
R(t) = f_1(S_t, I_t) = a_t S_t + b_t I_t + c_t
\]

که در آن \(f_1\) و \(f_2\) به ترتیب توابع خطی و
غیرخطی درجه ۱ و ۲ می‌باشد.

\[
R_t = g(a_t, b_t, c_t, d_t, e_t)
\]

\[
R_t = h(a_t, b_t, c_t)
\]

که در آن \(f_1\) و \(f_2\) به ترتیب توابع خطی و
غیرخطی درجه ۱ و ۲ می‌باشد.

\[
q_y = \frac{Q_y - Q_y', S_y}
\]

در شاخص فوق مقدار 0.5-1 به عنوان سال خاک، مقا در 0.5-1 به عنوان سال
سال تر و مقا در 0.5-1 به عنوان سال
(های) نرمال می‌شود.

برای استخراج منحنی‌ها، ابتدا میزان جریان
ورودی به سد تعبیه شده و سپس با استفاده از
توسط الگوریتم PSO در نرم‌افزار برناک‌نویسی MATLAB
مدلی با کمترین مقدار تابع هدف به‌دست‌آمده.
فصلنامه علمی پژوهشی مهندسی آبیاری و آب

سام هشتون • شماره سی ام • زمستان 1396

آمد انتخاب تعداد دره و تعداد تکرار مناسب جهت رسیدن به کمیته نابع هدف بهره‌سوزی سعی و خطأ است. در اکنون PSO، حکمران دره را به‌کمک تعداد بالا در موقعیت (gbest) به سوی موقعیت جمعی (pbest) با معادلات زیر قابل کنترل است:

\[
V_{n+1}^{id} = X_{n+1}^{id} + \left[C_1 \left(Pbest_{n+1}^{id} - X_{n}^{id} \right) + C_2 \left(X_{n}^{id} - W \right) \right]
\]

\[
\Delta V_{n+1}^{id} = \left[C_1 \left(Pbest_{n+1}^{id} - X_{n}^{id} \right) + C_2 \left(X_{n}^{id} - W \right) \right]
\]

\[
W = W_{max} - \left(\frac{W_{max} - W_{min}}{iter_{max}} \right) n
\]

\[
\min \left\{ \Delta V_{n+1}^{id} + \frac{1}{d} \left(\Delta V_{n+1}^{id} - V_{n+1}^{id} \right) \right\} \text{ در } i = 1, \ldots, D
\]

\[
\sum_{i=1}^{D} \left(\frac{1}{D} \right) \Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
\]

\[
\Delta V_{n+1}^{id} \leq V_{n+1}^{id} \leq V_{max} - V_{min}
جدول 2- مقادیر متغیرهای تصمیم حاصل از مدل به روش PSO

<table>
<thead>
<tr>
<th>شماره اجرا</th>
<th>نوع رابطه</th>
<th>سد</th>
<th>تعداد تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>خطی</td>
<td>بوکان</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>درجه 1</td>
<td>بوکان</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>درجه 2</td>
<td>بوکان</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>غیرخطی</td>
<td>بوکان</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>غیرخطی</td>
<td>بوکان</td>
<td>100</td>
</tr>
</tbody>
</table>

جدول 1- مقادیر تابع هدف در 10 باز اجرای برنامه با 10 سد

<table>
<thead>
<tr>
<th>شماره اجرا</th>
<th>سد</th>
<th>تعداد تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

گام زمانی در این مدل به مدل خطي درجه دو (رابطه 5) و مدل غیرخطی درجه دو (رابطه 4) در جدول 2 این، است. جدول 2 با توجه به نسبت بودن مدل خطي برای حداقل نمودن مقادیر تابع هدف در سد بوکان و مناسب بودن مدل غیرخطی درجه 2 برای سد مهاباد تنظیم شده است. در جدول (3) اطلاعات مقادیر آب ورودی به مخزن هر سد برای سال شکم و تر و نرمال طی دوره آماری مورد بررسی در گام زمانی ماهانه آمده است. مطابق ارقام ارائه شده در جدول 3 مجموع میانگین در این مدل بوکان به مخزن سد بوکان حدود 150 میلیون مترمکعب است که در دامنه ی 91/8 و 92/7 میلیون مترمکعب تغییر در دوره شکم و تر بوده است. به همین ترتیب سد مهاباد 269/3 میلیون مترمکعب آب در
منحنی فرمان سال خشک

در شکل (1) حجم رهاسازی و نیاز حجمی پایین- و دست مخزن سد بوکان و مهاباد بر حسب میلیون مترمکعب در دوره خشک ماهه‌های انتهای شده است. تمایل شکل (2): تغییرات رهاسازی در در دوره زمانی برای مهاباد (سمت راست) و سد بوکان (سمت چپ) طی دوره خشک.

شکل (1): تغییرات رهاسازی در در دوره زمانی برای مهاباد (سمت راست) و سد بوکان (سمت چپ) طی دوره خشک.

همانطور که در شکل 1 می‌باید به مخزن سد مهاباد (سمت راست) مشاهده می‌گردد، میزان رهاسازی بهدلیل بارش‌های کمی و جر به دوره آذر، دی بهم و اسفند که معادل نیاز پایین دست بوده در سایر ماه‌ها (معادل 62 درصد ماه) از میزان نیاز پایین دست کمتر است. در شکل می‌توان به مخزن سد بوکان (سمت چپ) نیز با شرایط مشابه، میزان رهاسازی از مخزن بهدلیل خشکی در تمام ماهه‌های سال از نیاز پایین دست کمتر بوده است که

نتایج به‌دست آمده که مقدار کم‌تری از میانگین که در دوره خشک می‌باشد. از طرفی بایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی بایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی بایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی

| ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌ترین ماهه‌ای کم‌تر از میانگین که در دوره خشک می‌باشد. از طرفی Bایستی کم‌
افزایش میزان جریان ورودی و حجم آب ذخیره شده در ماه‌های قبل زمستان بهدلیل شرایط ریزش‌های جوی و در اواخر فصل پاییز بهدلیل ادامه بارش‌ها و دوی تدریجی برخی ریزش‌های زمستانه در فصل بهار باعث افزایش گرم شدن هوا می‌باشد. از طرفی مطابق شکل ۲ حجم ذخایر آب برای هر سه بوکان و مهاباد در ماه‌های بهره‌مندی با توجه به حداکثر بودن حجم جریان ورودی به‌بیشتر از سایر ماه‌های ماه‌پیش‌اند. از دیگر نتایج شکل ۲ بیشتر بودن حجم ذخایر آب نسبت به حجم آب ورودی به مخزن سد‌ها در ماه‌های مختلف سال است که قابل بررسی برای تامین نیازهای پایین‌دست است.

در شکل ۳ حجم جریان ورودی به مخزن و حجم ذخیره‌سازی در مخزن، نشان داده شده است. از شکل ۳ می‌توان ملاحظه نمود که هر دو سد در تمام ایام سال همواره از ذخیره آب برخوردی بوده‌اند که می‌توانند در راستای تأمین منافع بهره‌برداران در پایین دست عمل نمایند. همچنین می‌توان اظهار داشت که روند ذخایر هر دو سد تابعی از میزان آب ورودی است. به‌غونه‌ای که هم‌گام با افزایش جریان ورودی در ماه‌های مهر تا اردیبهشت حجم ذخایر آب افزایش و با کاهش مقادیر جریان ورودی در ماه‌های خرداد تا شهریور حجم ذخایر آب نیز کاهش یافته است.

شکل (۳): تغییرات حجم ذخیره مخزن در هر دوره زمانی برای سد مهاباد (سمت راست) و سد بوکان (سمت چپ) طی دوره خشک
فصلنامه علمی پژوهشی مهندسی آبیاری و آب

شماره سی ام• زمستان 1391

شکل (4): حجم رهاسازی گذاری و محیط زیست در هر دوره زمانی سد مهاباد (بسته راست) و سد بوکان (بسته چپ) طی دوره خشک

در شکل (3) میزان حجم رهاسازی برای تأمین شرب و نیاز شرب یا باید و در شکل (2) نیز حجم آب مورد نیاز و رهاسازی شده برای بخش کشاورزی و محیط زیست بر حسب میلیون متر مکعب به صورت دوره‌ای ماهانه طی دوره خشک ارائه گردیده است. همان‌گونه که تصویر نشان می‌دهد در تمام ایام دوره خشک، سعی شده است تا نیازهای شرب مناطق تحت پوشش هر دو سد به‌طور کامل تامین گردد. مطابق شکل (3) میزان مصرف آب شرب در ماه‌های فصل پاییز و زمستان با توجه به برون‌ها نسبت به سایر ماه‌ها کمتر و در ماه‌های تابستان به‌صورت گرم شدن هوا بیشتر است. در مقابل مطابق شکل (4) به‌طور کلی کم بودن مصرف آب در تمام کامل نیازهای کشاورزی و محیط زیست ناموفق بوده است. بیشترین مصرف آب در نیازهای کشاورزی و محیط زیست برای سد بوکان و مهاباد بیشتر در ماه‌های تابستان ماه‌های آذر، دی، بهمن و اسفند هیچگونه آبی برای بخش کشاورزی و محیط زیست از مخزن سد مهاباد آزاد نشد و در سایر ایام سال هم‌اکنون باید از مخزن سد مهاباد از مجموع نیازهای کشاورزی و محیط زیست کمتر است. مشابه شکل (4) می‌تواند نیازهای آبی در سد‌های سد بوکان برای بخش کشاورزی و محیط زیست برق‌ارز است. در سد بوکان می‌توان در هر دوره خشک کمپوشدگی تأمین نیازهای برای کشاورزی و محیط زیست طی ماه‌های مهر تا شهریور 1388 (18/17/27/45/10/29/5/6/7/8/9) متوافق با بخش کشاورزی و محیط زیست کمتر می‌باشد.
 عدم رهاسی براساس نیاز باثبات، مستمر یا ماه‌های خردنامه با سه‌ماه‌های است. از انجیل‌که دخیر‌سازی اب در مخزن سدها طی دوره نرمال در مقایسه با سال‌های بیشتر است. لذا حجم آب بیشتری جهت رفع نیازهای یاپایین دست از این است. مقایسه دوره نرمال و خشک (شکل ۵) به‌طور کلی حجم آب رهاسی در هر دوره نرمال نسبت به دوره خشک است.

شکل ۵ (۵): تغییرات رهاسی در هر دوره زمایی برای سد مهاباد (سست راست) و سد بوکان (سست چپ) طی دوره نرمال

در سه‌ماه‌های بیشتری حجم دخیره مخزن در هر دوره زمایی برای سد مهاباد (سست راست) و سد بوکان (سست چپ) طی دوره نرمال، خشک یعنی رتبه‌های باز کمتر از ۶۵ درصد و ۳۲ درصد افزایش برخورد است. شکل ۶ نشان‌دهنده همگام بودن تغییرات حجم آب دخیره، شده مطلق تغییرات حجم آب ورودی به مخزن هر دوره سد است. با محوریکه در هر دوره بیشترین تغییرات دخیره آب مربوط به حجم بیشتر است که می‌تواند سیال بارش‌های باران و جریان‌های سطحی حاصل از ذوب ریزش، های جوی از چنین قابل ملاحظه، افزایش حجم دخیره آب در مخزن سد مهاباد متوسط با فاصله ۷۹۱۰ میلیون متر مکعب در سه‌ماه‌های متوسط در سه‌ماه‌های متوسط در سه‌ماه‌های متوسط در سه‌ماه‌های متوسط در دهه‌های اخیر به‌طور کلی بیشترین، شکل ۶ نشان‌دهنده تغییرات حجم ذخیره مخزن در هر دوره زمایی برای سد مهاباد (سست راست) و سد بوکان (سست چپ) طی دوره نرمال
نقشه‌نویسی علمی پژوهشی مهندسی ابیاری و آب

سال هشتم • شماره سی ام • زمستان ۱۳۹۶

یازدهمین جامعه حجم ذخیره معادل ۲۰/۵۵ میلیون مترمکعب در ماه اردیبهشت افتاده که نسبت به ماه مشابه آن در دوره حシュک ۱۸/۶ درصد حجم ذخیره بخش بوکان است. در دو دوره حシュک (۱) میزان حجم رهاسازی و نیاز شرب پایین‌تر بوده است. در دو دوره حシュک (۲) میزان حجم رهاسازی و نیاز شرب در دوره نرمال کاهش یافته است. در دو دوره حシュک (۳) میزان شرب در دوره نرمال کاهش یافته است. در دوره نرمال که سد از ذخیره بخش بیکرد، شرب در دوره نرمال که سد از ذخیره بخش بیکرد، شرب این ماه می‌باشد.

شکل (۷): حجم رهاسازی نیاز شرب در دوره زمستان برای سد بوکان (سرمت چپ) طی دوره نرمال

شکل (۸): حجم رهاسازی برای کشاورزی و محدود شرب در دوره زمستان برای سد بوکان (سرمت چپ) طی دوره نرمال
به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

به همین ترتیب برای سد مهاباد جداکتر کمبود نیاز کشوری و محیط زیست در ماه مهر می‌باشد. همچنین، شکستگی و محیط زیست به‌طور رقابتی کننده درون بوده. در نظر حفظ باورهای تغییر نسبت به میانگین درون‌های متغیر در مقایسه با دوره‌های مشابه باقی مانده است. نتایج شکل 8

فصلنامه علمی پژوهشی مهندسی آبیاری و آب
سال هشتم • شماره سی ام • زمستان ۱۳۹۶

شکل (9): تغییرات رهاسازی در هر دوره زمینی سد مهاباد (سمت راست) و سد بوکان (سمت چپ) طی دوره تر

شکل (10): تغییرات حجم ذخیره مخزن در هر دوره زمینی برای سد مهاباد (سمت راست) و سد بوکان (سمت چپ) طی دوره تر

شکل (11): حجم رهاسازی نیاز شرب در هر دوره زمینی برای سد مهاباد (سمت راست) و سد بوکان (سمت چپ) طی دوره تر
شکل (۱۲): حجم رهاسازی نیاز کشاورزی و محیط زیست در هر دوره زمانی سد مهاباد (سمت راست) و سد بوکان (سمت چپ) طی دوره تر مهاباد

مقاومت تغییرات حجم ذخیره جریان ورودی به مخازن سدها در دوره خشک و بارندگی در شکل‌های ۱، ۲ و ۳. نشان می‌دهد که در سد و سد از ناحیه‌های بهمن. اسفند، فروردین و اردیبهشت قطعیت لازم را برای انتقال سیال ایفا نمی‌کند. در دوره‌های خشک و بارندگی در انتقال باریک، سد مهاباد ایفای شکل ۱۰ در دوره تر گنجایش لازم را برای کنترل تمامی سیالات فصل بهار نداشته و بخشی از آب را برای حفظ ایمنی سد رها نموده است. این امر نشان می‌دهد که بهینه‌سازی برداری ناخن در مخازن سدها بدون تفکیک دوره‌های خشک و بارندگی نشان دهنده ایفای این موارد در زمان های مواجه با حداکثر جریان ورودی (دوره خشک) و حداقل جریان ورودی (دوره بارندگی) می‌باشد. به‌عنوان مثال، در دوره‌های خشک، که این ایرانیان از مشاهده سبک‌سوزاری و مشکلات طبی این دوره زمانی می‌شود برخی محققین سعی در استفاده از الگوریتم‌های خاص نظری الگوریتم گرگ (کبیره فرد و همکاران، ۱۳۹۴) و یا الگوریتم رنگ‌بندی با توابع قید فیزیکی (زنیلی و همکاران، ۱۳۹۴) را داشته‌اند. هنچنین با توجه به اهمیت جریان‌های سطحی می‌توان چنین نتیجه‌گیری کرد.
نتیجه گیری

در مدل PSO تعداد درات و تعداد تکرارها بستگی به نوع مسئله داشته که باید از مسئله و فضای حالت آن درآمد خواهد شد. برای استفاده از PSO باید از نرم‌افزارMATLAB در نظر گرفته شود. این از نرم‌افزارای محبوبی است که باید به طور کامل آموزش شود.

مراجع

1. اسکی، ف. و. بهترین‌یاری، ا. و. رهنمایی. ۱۳۹۴. یکپارچه سیستم‌های سیستم‌های پروپانیت. (WSA).
2. مدل‌سازی و بهبود درک مدل‌سازی باربور-پیو. (MOP). ۱۳۹۰. تحقیق در مورد استفاده از PSO. مدل‌سازی و بهبود درک مدل‌سازی باربور-پیو. (MOP).
3. اسکی، ف. و. بهترین‌یاری، ا. و. رهنمایی. ۱۳۹۴. یکپارچه سیستم‌های سیستم‌های پروپانیت. (WSA).

منابع

۱۳۹۴. ا. و. بهترین‌یاری، ا. و. رهنمایی. ۱۳۹۴. یکپارچه سیستم‌های سیستم‌های پروپانیت. (WSA).

Extraction the curves command of Bukan and Mahabad dam reservoir using PSO algorithm

Hamid Zare-Abyaneh1*, Bahareh Abdollahzadeh2, Sahar Palangi3

Abstract

In this study, PSO optimization algorithm was used to extract curves command of two Bukan and Mahabad dam reservoirs. The purpose was supplying of water need for drinking, agriculture and environment during specified period. Two linear and non-linear quadratic equations were used in the implementation of the PSO algorithm to explain behavior of two dams. The best answer was achieved from eighth implementation with 10 particles and 15,000 iterations for Bokan dam from linear 1 degree model with minimum value of target function 138.4 and also as an optimal model for Mahabad Dam in the third run with 10 particles and 70,000 iterations and applying a non-linear 2 degree model with 749.7 value of target function. The results showed that total long-term average inflow was 1506 and 269.3 million cubic meters during the wet and dry periods for Bukan and Mahabad reservoir, respectively. However, water shortages were 17.8, 45.48, 65.0, 51.9, 51.9, 50.24, 36.95, 67.35, 68.05 and 60.65, in agriculture and environment sections in Bokan dam at dry periods during October and September, respectively. Also, water shortages was 44.08 and 55.2 in Mahabad dam in October and November, and 26.22, 18.25, 19.24, 20.79, 24.92 and 14.86 % of in April and September. Thus the release of water was complete for drinking purposes in the dry and normal years and was less than required for agriculture and the environment purposes. Also maximum deficit was 57 and 40 % in July and October for Bukan and Mahabad, respectively. Overall it can be said That, part of the shortage of agriculture and environment caused by the lack of inflow to the lake of the dams and partly is due to completely supply drinking needs. While all sectors in all months have had enough of the water in wet year due to the high inflow into the lake of the dams.

Keywords: Particle Swarm Optimization, The Society Particles, Collective Behavior, Movement of Birds and Fishes.

1 Associate Professor, Department of Water Engineering, Bu-Ali Sina University, Hamedan,Iran *Corresponding Author, Email: zareabyaneh@gmail.com
2 M.S.Graduated of Irrigation and Drainage, Bu-Ali Sina University, Hamedan,Iran.
3 Ph.D. student of Irrigation and Drainage, Bu-Ali Sina University, Hamedan,Iran.