تحلیل فراوانی دو متغیره شدت و عمق بارندگی با استفاده از توابع مفصل (مطالعه موردی: حوزه آبخیز چهل‌چای، گرگانرود، استان گلستان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

بارندگی به عنوان ورودی در مدل‌سازی سیل و طراحی سازه‌های هیدرولیکی از اهمیت بسزایی برخوردار است. تحلیل فراوانی بارش از جمله وظایف مهم هیدرولوژیست‌ها و برنامه ریزان منابع آب می‌باشد. پدیده‌های هیدرولوژیکی از جمله بارندگی به صورت چند متغیره (شدت- عمق- مدت) هستند، از این رو مدل‌سازی مشترک از چندین متغیر تصادفی لازم است. با توجه به اهمیت دو متغیر شدت و عمق بارندگی در مدیریت سیلاب و طراحی سازه‌های هیدرولیکی، در این تحقیق از توابع مفصل برای تحلیل ساختار وابستگی بین این دو متغیر استفاده شد. برای این منظور از 40 سال داده‌های بارندگی ثبت شده ایستگاه باران‌سنجی مینودشت واقع بر رودخانه چهل‌چای حوزه آبخیز گرگانرود استفاده شد. همچنین جهت تعیین ریسک مجاز خراب شدن یک سازه در مقابل بارندگی، دوره بازگشت در حالت یک متغیره با دوره بازگشت دو متغیره بر اساس توابع مفصل منتخب مورد مقایسه قرار گرفت. در این تحقیق بر اساس معیارهای نیکویی برازش، مفصل فرانک منجر به بهترین نتیجه در مدل‌سازی متغیرهای شدت و عمق بارندگی شد. دوره بازگشت دو متغیره بر اساس مفصل فرانک برآورد گردید که در مقایسه با دوره بازگشت یک متغیره، موجب بهبود در برآورد ریسک مجاز یک سازه می‌شود. به عنوان مثال، رخداد واقعه‌ای با مقادیر شدت بارندگی 45/33 میلی‌متر بر ساعت و عمق بارش 61/168 میلی‌متر برای دوره بازگشت یک متغیره‌ی 100 سال، در دوره بازگشت توأم «یا» برابر 53 سال و در دوره بازگشت توأم «و» برابر 954 سال است. مقایسه تحلیل دو متغیره با تحلیل یک متغیره گویای اختلاف مقادیر حاصل از این دو روش است. از آنجا که تحلیل یک متغیره وقایع هیدرولوژیک به علت عدم در نظر گرفتن تمامی مشخصه‌های مؤثر در پدیده، تحلیلی جامع و به دور از خطا نخواهد بود، لذا استفاده از تحلیل چند متغیره وقایع هیدرولوژیک در مطالعات توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Bivariate frequency analysis of rainfall intensity and depth using copula functions (Case study: Chehelchai Watershed, GorganRood, Golestan)

نویسندگان [English]

  • zeynab Afsharypour 1
  • abodolreza Bahremand 2
  • Mohammad Abdolhosseini 3
1 MSc Graduated of Watershed Management, Department of Watershed Engineering, Gorgan University of Agricultural Sciences and Natural Resources
2 Associate Prof., Department of Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources. Gorgan
3 Assistant Prof., Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources.
چکیده [English]

Rainfall as an input factor for flood modeling and design of hydraulic structures has great importance. Rainfall frequency analysis is a major task for water resources planners and hydrologists. Considering this fact that hydrological phenomena including rainfall are multivariate (intensity-depth-duration) terms, joint modeling of several random variables would be required. Considering the importance of two rainfall characteristics including intensity and depth in flood management and design of hydraulic structures, in this research, copula function was used for the analysis of dependency structure of these two variables. For this purpose, 40 years recorded rainfall data in Minoodasht hydrometry station located on Chehelchay River in Gorganrood watershed was used. In order to determine the allowable risk of structure failure against rainfall, its univariate return period was compared with estimated joint return period through selected copula. In this study, Frank copula led to the best results in bivariate modeling of rainfall intensity and depth, according to goodness of fit tests. Associated return period was estimated by Frank copula to improve allowable structural risk estimation in comparison to univariate return period. For example, an incident with the intensity of rainfall equal to 45.43 mm/h and its depth of 168.61 mm for 100 years’ univariate return period is 53 years in "or" case and 954 years in "and" case for bivariate joint return period. Comparison of bivariate analysis with univariate analysis indicates the difference the outcome of these tow methods. As due to the lack of consideration of all effective features in the phenomenon, the univariate analysis of hydrological events would not be a comprehensive analysis, therefore, the multivariate analysis of hydrological events is recommended.

کلیدواژه‌ها [English]

  • Rainfall
  • bivariate frequency analysis
  • Copula
  • univariate return period
  • Bivariate return period

بهره‌مند، ع.، غ. تیموری، م. صمدی، ح. کورنژاد، آ. الوندی، ا. هروی، ح. بهرامی، م. تاجیکی، و م. دشتی. 1394. مروری بر توابع کاپولا در علم هیدرولوژی، نشریه حفاظت و بهره‌برداری از منابع طبیعی، ۴ (۲).

 

حامی کوچه باغی، م.، ناظمی، ا.ح.، اشرف صدرالدینی،ع.، دلیر حسین­نیا،ر.1395. محاسبه تبخیر- تعرق مرجع بر مبنای تحلیل آماری دمای هوا(مطالعه موردی:منطقه تبریز). نشریه دانش آب و خاک. 26(2). ص 31-54.

 

سالاری‌جزی، م.، آخوندعلی، م.ع.، ادیب. آ. و ع. دانشخواه. 1392. تحلیل فراوانی سیلاب دو متغیره با استفاده از توابع مفصل، علوم و مهندسی آبیاری (مجله علمی کشاورزی)، 37 (4).

 

عبدالحسینی، م. 1391. کاربرد کوپلا در تحلیل فراوانی چند متغیره‌ی جریان‌های کم و ارزیابی رگرسیون کوپلایی به منظور استفاده در تحلیل متغیر‌های غیر مستقل. رساله دکتری. دانشگاه صنعتی اصفهان. دانشکده کشاورزی. 232 ص.

 

علیزاده، ا. 1390. اصول هیدرولوژی کاربردی، چاپ سی و سوم، انتشارات دانشگاه امام رضا، 158-221.

 

قهرمان، ب.، ح. شامکوئیان، ک. داوری. 1389. استخراج معادلات منطقه‌ای مقدار- مدت- فراوانی بارش با استفاده از تئوری گشتاورهای خطی (مطالعه موردی: استان‌های خراسان). مجله آبیاری زهکشی ایران. 4 (1).

 

AghaKouchak, A., A. Bardossy and E. Habib. 2010. Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed Copula, Advances in Water Resources, 33(6), 624-634.

 

Cherubini, U., E. Luciano, and W, Vecchiato. 2004. Copula Methods in Finance, John Wiley, Sons Ltd, England.310p.

 

De Michele, C., and G. Salvadori. 2003. A Generalized Pareto intensity-duration model of storm rainfall exploiting Copulas. J. Geophys. Res., 108(D2): 1-11.

 

Genest, C., and A.C. Favre, 2007. Everything you always wanted to know about Copula modeling but were afraid to ask. J. Hydrol. Eng., 12(4): 347- 368.

Gottschalk, L.1985. Hydrological regionalization of Sweden. Hydrological Sciences Journal.30:65-83.

 

Graler, B., M. J, Van den Berg., S, Vandenberghe, A, Petroselli, S, Grimaldi, B, De Baets., and N.E.C. Verhoest. 2013. Multivariate retum periodes in hydrology: a critical and practical review focusing on synthetic desing hydrograph estimation, Hydrol. Earth Syst. Sci., 17: 1281-1296, doi: 10.5194/hess-17-1281-2013.

 

Grimaldi, S.and F. Serinaldi.2006. Design hyetographs analysis with 3- Copula function, Hydrolog. Sci. J., 51(2):223-238.

 

Joe, H. 1997. Multivariate models and dependence concepts. Chapman and Hall, London.

Kojadinovic, I. and J. Yan, 2009. Package Copula. Version 0.9-7, May 28, 2010. Available in: http://cran.r-project.Org/web/packages/copula/coupla.pdf. Access in Feb 1, 2011.

 

Kojadinovic, I. and J. Yan, 2010. Modeling Multivariate Distributions with Continuous Margins Using the copula R Package. J. Statistical Soft. 34(9): 1-20.

 

Nelsen, R. 2006. An introduction to copulas. Springer, New York, second edition. Lecture notes in statistics.

 

Requena, A.I., Mediero, L and Garrote, L. 2013. A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. J. Hydrol. Earth Syst. Sci. 17: 3023–3038.

 

Salvadori, G. and C. DeMichele. 2011. Estimating strategies for multiparameter Multivariate Extreme Value copulas. J. Hydrol. Earth Syst. Sci. 15, 141–150, doi: 10.5194/hess-15-141-2011.

 

Salvadori, G. and C. DeMichele. 2014. Multivariate real-time assessment of droughts via Copula- based multi-site Hazard Trajectories and Fans, Journal of Hydrolog,526:101-115.

 

Salvadori, G. and C. DeMichele. 2006. Statistical characterization of temporal structure of storms, Advances in Water Resources, 29(6): 827-842.

 

Sklar, A., 1959. Fonction de re’partition a’n dimensions et leurs marges. [Distribution functions, dimensions and margins]. Publications of the Institute of Statistics, University of Paris, Paris, pp. 229–231. (In French).

 

Smithers, J.C. and R.E. Schulze. 2000. A methogology South Africa using a regional approach based on L-moments. J. Hydrol., 241, 42-52.

 

Yue, S., P, Rasmussen. 2002. Bivariate frequency analysis: discussion of some useful concepts in hydrological applications. Hydrol. Process, 16: 2881-2898.

 

Zhang, J., Z, Ding. J, You. 2014. The joint probability distribution of runoff and sediment and its change characteristics with multi - time scales. J. Hydrol. Hydromech. 62(3): 218-225.

 

Zhang, L.and V.P. Singh. 2006.Bivariate rainfall frequency distributions using Archimedean Copulas, Journal of Hydrology,332:93-109.

 

Zhao, P., Lu, H., Fu, G., Zhu, Y., Su, J., Wang, J. 2017. Uncertainty of Hydrological Drought Characteristics with Copula functions and probability Distributions: A Case Study of Weihe River, China. Water 2017, 9, 334; doi 10.3390/w905.