واسنجی داده های باران سری 3B43 ماهواره TRMM در استان هرمزگان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، کارشناسی ارشد دانشکده آب و خاک، دانشگاه زابل

2 گروه مهندسی آب. دانشکده آب و خاک، دانشگاه زابل

3 هیئت علمی پژوهشکده تالاب بین المللی هامون، دانشگاه زابل

4 دانشکده آب و خاک، دانشگاه زابل

چکیده

بارش یکی از پارامتر­های مهم اقلیمی موثر در مدل­های هیدرولوژیکی است. لذا برآورد صحیح مقدار و توزیع مکانی آن در یک حوزه آبخیز از اهمیت زیادی برخوردار است. در سال های اخیر به دلیل تعداد و تراکم محدود ایستگاه­های بارانسنجی در سطح کشور و نبود ایستگاه در مناطق کوهستانی و  صعب العبور، استفاده از داده های ماهواره ای بارش به عنوان ابزاری موثر در پیش بینی توزیع مکانی منطقه ای بارش مورد توجه محققین قرار گرفته است. در پژوهش حاضر به بررسی صحت داده­های بارشی3B43   TRMMکه یکی از محصولات بارشی ماهواره TRMM است در 40 ایستگاه باران سنجی و 9 ایستگاه سینوپتیک استان هرمزگان در مقیاس ماهانه پرداخته شد. مقایسه بین داده­های ماهواره­ای و مشاهده­ای در ایستگاه­های منتخب واقع در دوره آماری 1998-2012 انجام شد. برای ارزیابی میزان انطباق بارندگی برآوردشده توسط ماهوارة TRMM با مقادیر مشاهده ای در ایستگاه های بارانسنجی و سینوپتیک از معیارهای آماری شامل ضرایب همبستگی اسپیرمن (Rs)، ضریب همبستگی پیرسون (Rp)، میانگین مطلق خطا (MAE)، ریشه میانگین مربعات خطا (RMSE) و میانگین مجذور خطا (MSE)، و نیز شاخص های مطابقت (POD, FAR, TSS و CSI) استفاده شد. براساس نتایج به دست آمده، بیشترین مقدار شاخص POD (1) در ماه­ آگوست و کمترین مقدار آن (92/0) در ماه­ می برآورد شد. از طرفی بیشترین مقدار شاخص FAR (91/0) و کمترین مقدار شاخص CSI (08/0) در ماه­ می، و همچنین کمترین مقدار شاخص FAR (16/0) و بیشترین مقدار شاخص CSI (83/0) در ماه ژانویه برآورد شد. علاوه بر این ها، بیشترین مقدار ضریب همبستگی پیرسون (64/0) و اسپیرمن (76/0) در ماه دسامبر و کمترین آن ها در ماه های آپریل، می و جولای اتفاق افتاد. این نتایج نشان می دهد که بیشترین دقت ماهواره TRMM در فصل های زمستان و بهار و کمترین آن، در تابستان اتفاق افتاده است. بعبارت دیگر، ماهواره TRMM توانسته است وقوع بارندگی در ماه های سرد سال را بهتر از ماه های گرم سال پیش بینی کند. همچنین نتایج نشان داد داده­های TRMM در اکثر ماه های سال مقدار باران را بیشتر برآورد می کند که پس از واسنجی، با توجه به نقشه های پهنه بندی ماه های آگوست و دسامبر بهبود قابل ملاحظه ای در تخمین بارش توسط ماهوارة TRMM اتفاق افتاد.

کلیدواژه‌ها


عنوان مقاله [English]

Calibration of TRMM 3B43 precipitation data in Hormozgan province

نویسندگان [English]

  • Maryam Safavi Gherdini 1
  • Masoomeh Delbari 2
  • Meysam Amiri 3
  • Jamshid piri 4
1 Graduated, Master of Water Resources, Zabol University
2 Associate Professor, University of Zabol
3 Instructor, Faculty of Hamoon International Pond Research Institute, Zabol University
4 Instructor, Faculty of Water and Soil University, Zabol University
چکیده [English]

Precipitation is one of the important climatic parameters in hydrological models. Therefore, the accurate estimation of its amount and spatial distribution in a watershed is of great importance. In recent years, due to the limited number of raingage stations especially in mountainous areas, the use of satellite precipitation data as an effective tool for predicting regional distribution of rainfall has gained lots of attention by the researchers. In the present study, the accuracy of TRMM 3B43 data, which is one of the TRMM products, was evaluated in 40 raingage stations and 9 synoptic stations in Hormozgan province in a monthly scale. Comparison of satellite data with the observation data was performed for the time period 1998-2012. To assess the agreement between TRMM rainfall data with observation data, the statistical criteria including Spearman correlation coefficients (Rs), Pearson correlation coefficient (Rp), mean absolute error (MAE), root mean square error (RMSE) and mean square error (MSE), as well as probability of detection (POD), false alarm ratio (FAR), true skill statistics (TSS) and critical success index (CSI) were used. Based on the results, the highest value of POD (1) was observed in August and the lowest POD (0.92) was obtained in May. Moreover, the highest FAR (0.91) and the lowest CSI (0.08) were observed in May, and the lowest FAR (0.16) and the highest CSI (0.83) was obtained in January. In addition, the highest Rp (0.64) and Rs (0.76) were seen in December while the lowest Rp and Rs were occurred in April, May and July. These results indicate that the TRMM satellite has the highest accuracy of predicting rainfall in winter and spring while it has the lowest performance in summer. In other words, the TRMM satellite is able to predict rainfall in cold months better than in warm months of the year. The results also showed that TRMM overestimates rainfall in most months of the year, however the results were significantly improved after calibration especially in August and December as seen in spatial distribution maps.

کلیدواژه‌ها [English]

  • Monthly Rainfall
  • Estimation
  • agreement index
  • Calibration
  • TRMM

امیدوار، ک.، م.، فنودی.، و ع.، بنی واهب. 1392.  بررسی تطابق آمار بارندگی ماهواره TRMM با ایستگاه­های اقلیمی زمینی مطالعه موردی: ایستگاه­های همدید استان خراسان رضوی. نخستین کنفرانس ملی آب و هواشناسی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان.

سایت سازمان هواشناسی کشور. 1394. http://www.irimo.ir

شیروانی، ا.، و ا.،فخاریزادهشیرازی. 1393. مقایسةمقادیرمشاهداتیبارشوبرآوردهایماهوارهTRMM دراستانفارس. نشریةهواشناسی کشاورزی. شماره 2، صفحه 15-1.

عرفانیان، م.، س، کاظم پور.،ح، حیدری. 1395. واسنجی داده‌های باران سری 3B42 و 3B43 ماهوارۀ TRMM در زون‌های اقلیمی ایران. پژوهشهای جغرافیای طبیعی48(2): 287-303.

کاویانی، م.، و ب.، علیجانی. 1388 مبانی آب وهواشناسی. انتشارات سمت. صفحه 594.

Almazroui, M. 2011. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998-2009. Atmospheric Research, P.400-414.

heng, C., Yu, Z., Li, L. and Yang, c. 2011. Adaptability Evaluation of TRMM Satellite Rainfall and Its Application in the Dongjiang River Basin. Procedia Environmental Sciences, 10: 402–396.

Chokngamwong, R. and Chiu, L.S. (2008). Thailand Daily Rainfall and Comparison with TRMM Products, Journal of Hydrometeorology, 9(2): 256-266.

Huffman, G. J. and Bolvin, D. T. 2012. TRMM and other data precipitation data set documentation. Laboratory for Atmospheres, NASA Goddard Space Flight Center and Science Systems and Applications, Inc [WWW document] Available at: ftp://meso-a.gsfc.nasa.gov/ pub/ trmmdocs /3B42_3B43_doc. pdf (accessed 23 March 2012).

Isaaks, E. H. and Srivastava, R. M. 1989. An Introduction to Applied Geostatistics. New York: Oxford University Press.

Karaseva, M., Prakash, S. and Gairola, R. M. 2012. Validation of High Resolution TRMM 3B43 Precipitation Product Using Rain Gauge Measurements over Kyrgyzstan. Theoretical and Applied Climatology, 108(1-2): 147-157.

Khan, A.J., Koch, M. and Chinchilla, K.M. 2015. Evaluation of gridded multi-satellite precipitation (TRMM -TMPA) estimation performance in the Upper Indus Basin (UIB). International Conference on Water resources, Coastal and Ocean Ebgineering (ICWRCOE 2015).

Kizza, M., I. Westerberg, A. Rodhe and H. K. Ntale. 2012. Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data. J. Hydrol. 464: 401-411.

Li, X. H., Zhang, Q., Xu, C. Y. 2012. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. Journal of Hydrology, 426: 28-38.

Milewski, A., R. Elkadiri and M. Durham. 2015. Assessment and comparison of TMPA satellite precipitation products in varying climatic and topographic regimes in Morocco. Remote. Sens. 7(5): 5697-5717.

Moazami, S., S. Golian, M. R. Kavianpour and Y. Hong. 2013. Comparison of PERSIANN and V7 TRMM Multisatellite precipitation analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 34(22): 8156-8171.

Moazami, S., S. Golian, Y. Hong, C. Sheng and M. R. Kavianpour. 2014. Comprehensive evaluation of four highresolution satellite precipitation products over diverse climate conditions in Iran. Hydrol. Sci. J. 61(2): 420-440.

Qin, Y., Chen, Z., Shen, Y., Zhang, S., & Shi, R. (2014). Evaluation of satellite rainfall estimates over the Chinese Mainland. Remote Sensing, 6(11), 11649-11672.

Wilks, D. S. 2006. Statistical Methods in the Atmospheric Sciences, 2nd ed., International Geophysics Series, vol. 91, Academic Press, San Diego, CA, 627 pp.

Wilks, D. S., 2011, Statistical Methods in the Atmospheric Sciences, Vol. 100, Academic press.