Assessing the Physical and Economic Water Productivity of Annual Crops in Moghan Plain and Analyzing the Relationship between Physical and Economic Water Productivity

Document Type : Original Article

Authors

1 Department of Science and Water Engineering, faculty of Agriculture and Natural Resources , Imam Khomeini International University. Qazvin, Iran.

2 Assistant Professor, Department of Water Engineering, Imam Khomeini International University, Qazvin, Iran

3 Department of Agricultural Extension and Education, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

4 Department of Science and Water Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

5 Department of Irrigation & Reclamation Engineering, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

10.22125/iwe.2020.120729

Abstract

In this research, water productivity of annual crops in Moghan plain using physical and economic productivity indices were evaluated and the relationship between physical and economic productivity based on field data has were analyzed. The physical productivity of wheat, canola, soybean, rice, corn, forage, corn, melon, alfalfa, tomato, barley, nectarine, watermelon, cucumber and sugar beet were 1/27, 0/5, 0/67, 0/069, 4/5, 0/45, 3/2, 0/25, 3/46, 1/19, 0/55, 3/1, 0/42 and 5/5 (kg / m3), respectively. Also, Economic water productivity of these crops were 1098, 572, 702, 313, 542, 2286, 322, 97, 832, 685, 547, 279, 267 and 1111, respectively. (Tomans/m3). The results of the interaction matrix and the density of the physical and economic water productivity showed that barley, rice, alfalfa, nylon, cucumber and canola are relatively weak or weak based on physical and economical water productivity indices. Forage, melon and honey physical productivity was in good condition, while in terms of economic productivity, the situation is relatively weak. Among the studied crops, only Sugar beet and tomato water productivity were at a good or good situation for both indices. In general, the results of the research showed relatively poor water productivity at the plain. Also, the findings showed that there is no logical and mathematical relationship between the two indices of physical and economical productivity water. Depending on the water productivity index, the proposed management approaches will be completely different. Hence, both indices should be evaluated in each region and differences of indices should be noticed in water planning.

Keywords


اشراقی، ف و س. قاسمیان. 1391. بررسی بهره‌وری اقتصادی مصرف آب در استان گلستان. پژوهش آب در کشاورزی. جلد 26، شماره 3. 317-322.
حیدری، ن.، ا. اسلامی، ع. قدمی فیروزآبادی، ا. کانونی؛ م. اسدی و م. خواجه عبداللهی. 1385. کارآیی مصرف آب محصولات زراعی مناطق مختلف کشور (مناطق کرمان، همدان، مغان، گلستان و خوزستان). مجموعه مقالات همایش ملی مدیریت شبکه‌های آبیاری و زهکشی. دانشگاه شهید چمران اهواز. دانشکده مهندسی علوم آب.
زمانی، ا.، س. مرتضوی و ح. بلالی. 1393. بررسی بهره‌وری اقتصادی آب در محصولات مختلف زراعی در دشت بهار. نشریه پژوهش آب در کشاورز، جلد 28، شماره1. 51-62.
سلطانی، غ.، م. اکبری و ح. محمدی. 1388. بررسی بهره‌وری آب در مناطق خشک (مطالعه موردی در مرودشت). ششمین کنفرانس اقتصاد کشاورزی. مشهد، ایران.
سلیمانی، ح و ا. حسنلی. 1387. محاسبه قیمت تمام شده، بهره وری مصرف و ارزش افزوده آب برای محصولات عمده در منطقه خشک داراب. کشاورزی پویا، دوره 5، شماره 1، 45-60. 
Bastiaanssen, W.G and P. Steduto. 2016. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Science of the Total Environment, 575: 595-611.
Bhatt, R., S. Arora and C.C. Chew. 2016. Improving irrigation water productivity using Tensiometers. Soil and Water Conservation, 15(2): 120-124.
Foster, T., N. Brozovic, A.P. Butler. C.M.U Neale, D. Raes, P. Steduto and T.C. Hsiao. 2017. AquaCrop-OS: An open source version of FAO's Crop water productivity model. Agricultural Water Management, 181: 18-22.
Liu, J., A.J.B. Zehnder and H. Yang. 2008. Drops for crops: modelling crop water productivity on a global scale. Global NEST, 10(3): 295-300.
Nazari, B., A.L. Liaghat, M.R. Akbari and M. Keshavarz. 2018. Irrigation water management in Iran: Implications for water use efficiency improvement. Agricultural water management, 208: 7-18.
Phogat, V., M.A. Skewes, M.G. McCarthy, J.W. Cox, J. Simunek and P.R. Petrie. 2017. Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip. Agricultural Water Management, 180: 22-34.
Singh, R., J.C. Van Dam and R.A. Feddes. 2006. Water productivity analysis of irrigated crops in Sirsa District. Indian Agricultural Water Management, 82: 253-278.
Water Watch. 2004. Economic Water Productivity of Irrigated Crops in Sirsa District, India. Research project No. 17. Available online at: (http://www.waterwatch.nl/fileadmin/bestanden/Project/Asia/0017_IN_2003_Watpro_Si rsaDistrict.pdf).
World Bank. 2006. World Development Indicators. Available at: www.worldbank.org/.
Zwart, S.J and W.G.M. Bastiaanssen. 2004. Review of measured Crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 69 (2): 115-133.