Seepage Forecasting in Earth Dam Using Multivariate Adaptive Regression Spline Method (MARS), Case Study: Eyvashan Dam

Document Type : Original Article

Authors

1 Master of Science Civil Engineering, Water Engineering and Hydraulic Structures of Ayatollah Borujerdi University

2 Assistant Professor, Department of Civil Engineering, University of Ayatollah Ozma Boroujerdi, Boroujerd, Iran

3 Assistant Professor, Water Engineering and Hydraulic Structure Ph.D., Department of Civil Engineering, Faculty of Engineering, University of Ayatollah ozma Borujerdi, Borujerd, Iran

Abstract

The accurate design of the geometry and the sealing layers of the earth dam to obtain the optimum structure are important from a practical and economic point of view. Due to the complexity of the analytical methods, the numerical method is the best practical solution for measuring the mechanical behavior of the dam including seepage and slope stability. In this study, reliability analysis of seepage and slope stability of Eyvashan dam has been performed using Multivariate Adaptive Regression Splines (MARS). The Eyvashan earth dam was modeled in Seep/w and Slope/w Software's and the model was validated by observational data of instruments. Then, forecasting of seepage and slope stability was investigated by MARS method. For this purpose, 214 data series from Seep/w numerical analysis and 300 data series from Slope/w numerical analysis were used to establish the MARS model. The model was evaluated and validated by these data. The MARS model showed high performance in modeling process with determination coefficients of 0.98 and 0.97 and the root mean square error of 0.0132 and 0.0160 for seepage discharge and safety of factor of slope stability, respectively. Also, in this study, the effective parameters in seepage and slope stability such as permeability of materials, internal friction angle of soil, specific weight of materials and upstream water level were sensitized to determine the best combination of modeling input's structure. The parameters of the upstream water level 29.5% and the permeability of the core 12.5% had the greatest effect on the seepage and internal friction angle of shell with 69.7% had the greatest effect on the factor of safety. Also, suitable combinations of input parameters were presented and a comprehensive relationship was obtained to accurately estimate the seepage discharge and factor of safety in different modes of layer arrangement and their characteristics

Keywords

Main Subjects


  1. . پاک نیت، ا. جواهری، ا. (1388). تحلیل استاتیکی و دینامیکی سدهای خاکی با استفاده از  GeoStudio.نشر علم عمران.

         . خلیلی، م. عبداللهی، ح. (1395). بررسی تاثیر انواع زهکش‌ها برمیزان جریان نشت و پایداری شیروانی سدهای خاکی(سد ایزد خواست) سومین کنفرانتس بین المللی پژوهش‌های نوین در عمران معماری و شهرسازی.                 

         . دقیق، ح. حسن پور درویشی، ح. موسوی جهرمی، ح. آنالیز ضریب اطمینان پایداری سدهای خاکی نسبت به زمان نشریه آبیاری و آب ایران، سال 5، شماره 2، ص 28-15.                                                                                       

         . دلاور، ا. ذو نعمت کرمانی، م. برادران، غ. (1395). شبیه سازی نشت در بدنه سد خاکی با استفاده از روش عددی بدون شبکه المان طبیعی(سد درودزن)، نشریه علمی پژوهشی سد و نیروگاه برق آبی، دوره 3، شماره 8، ص 55-45.                                                                                                                                      

         . کماسی، م. بیرانوند، ب. بررسی جابجایی‌های قائم و افقی سد خاکی ایوشان با استفاده از ابزاردقیق و تحلیل عددی نشریه آبیاری و آب ایران، دوره 51، شماره 1، ص 256-245.                                                                       

          Abraham, A., Philip, N. S., & Saratchandran, P. (2004). Modeling chaotic behavior of stock indices using intelligent paradigms. arXiv preprint cs/0405018.

          . Friedman, J. (1991). Multivariate adaptive regression splines. The annals of statistics, 19(1), 1-67. 

          .   Fakhari, A., & Ghanbari, A. (2013). A simple method for calculating the seepage from earth dams with clay core. Geoengineering, 8(1), 27-32.                 

         Jamel, A. A. J. (2016). Analysis and Estimation of Seepage through Homogenous Earth Dam without Filter. Journal of Engineering Sciences, 9(2), 38-49.  

         . Kamanbedast, A., & Delvari, A. (2012). Analysis of earth dam: Seepage and stability using Ansys and Geo-studio software. Sciences Journal, 17(9), 1087.            

         . Kumar, V., Samui, P., Himanshu, N., & Burman, A. (2019). Reliability-Based Slope Stability Analysis of Durgawati Earthen Dam Considering Steady and Transient State Seepage Conditions Using MARS and RVM. Indian Geotechnical Journal, 49(6), 650-666.                       

         Miao, F., Wu, Y., Li, L., Tang, H., & Li, Y. (2018). Centrifuge model test on the retrogressive landslide subjected to reservoir water level fluctuation. Engineering Geology245, 169-179.                                                                                                                                                                              

    1. Robbins, B. A., van Beek, V. M., López-Soto, J. F., Montalvo-Bartolomei, A. M., & Murphy, J. (2018). A novel laboratory test for backward erosion piping. International Journal of Physical Modelling in Geotechnics, 18(5), 266-279.

        .Sherard, J. L. „Woodward, RJ, Gizienski, SF, and Clevenger, WA, 1963, Earth and earth-rock dams.

         . Schmertmann, G.R., V.E. Chourey - Curtis. Johansson, R.D., and Bonaparte,R. ,(1987). ̎ Design charts for Geogrid-r-." J. Eng. Tech 23.12 (2004): 750-766.

         . Yang, C. C., Prasher, S. O., Lacroix, R., & Kim, S. H. (2003). A multivariate adaptive regression splines model for simulation of pesticide transport in soils. Biosystems Engineering, 86(1), 9-15.