A New Approach for Geometric Modeling and Calculation of Volumes of Flood Protection Levees (Case Study)

Document Type : Original Article

Authors

1 PhD Candidate, Faculty of Civil Engineering, Semnan University, Semnan

2 Associated Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran

3 Hydraulic structure Department, Civil Engineering faculty, Semnan university

4 Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran

Abstract

Increasing encroachment on rivers along with climate change has increased major floods. Levees are considered the most important structures to protect river banks and floodplains from flooding due to their simplicity of structure, inexpensive materials, and ease of implementation. In this research, an attempt was made to introduce a new approach in geometric modeling, to develop mathematical relationships to calculate the volumes of levees based on different location of each scenario in the floodplain. Study scenarios supply the protection of three kilometers of the Chabahar-Zahedan arterial road and its widening, which is located in the floodplain of the Karvandar River in southeastern Iran. Hydraulic simulations implemented in HEC-RAS for the existing condition and 13 different scenarios with 13 unique topographies based on the new approach, and the rate of reduction of the flood zone and embankment volume of levees for each scenario calculated in ArcMap. Based on the results, changes in the volume of embankments in different scenarios did not correlate well with the flood zone area reduction. Due to the direct dependence of scouring and thus geometry and volumes of levees on flow velocity, by calculating the flow maximum velocity in the study interval, the dimensionless coefficients of maximum velocity in different scenarios were calculated and applied to the calculated volumes of levees. Thus, by this approach and using quadratic polynomial equations, the coefficient of determination (R2) increased from 0.35, 0.48 and 0.50 to acceptable values ​​of 0.88, 0.91 and 0.92, for floods with return periods of 50, 100 and 200 years, respectively, which indicate the high efficiency of the proposed approach and also increasing in R2 values with an increase in the flood return period. Moreover, results show that the computational accuracy of regression relationships in the scenarios with levee locations in the middle distances from the road axis is higher than other scenarios which are closer or farther. This result is due to more irregular river geometry in the scenarios closer to the road and the intensification of nonlinear changes in flood parameters in the farther scenarios.

Keywords

Main Subjects


صابری تنسوان، م.، گنجی نوروزی، ز. دلقندی، م. نیک­قلب عاشوری، س.، درستکار، و. 1399. بررسی آنالیز حساسیت پارامترهای سیل نسبت به تغییرات زبری (مطالعه موردی: منطقه شیروان). نشریه مهندسی آبیاری و آب ایران، سال دهم، شماره چهلم، ص 180-167.
یخکشی، م. مفتاح هلقی، م.، ظهیری، ع.، یخکشی، م. ا.، مددی، م. 1393. نقش احداث سد مخزنی نرمآب بر کاهش پهنه سیل و خسارات وارده به اراضی پایین­دست. نشریه مهندسی آبیاری و آب ایران، سال چهارم، شماره شانزدهم، ص 36-24.
Alaghmand, S., Bin Abdullah, R., Abustan, I., & Eslamian, S. 2012. Comparison between capabilities of HEC-RAS and MIKE11 hydraulic models in river flood risk modelling (a case study of Sungai Kayu Ara River basin, Malaysia). International Journal of Hydrology Science and Technology, 2(3), 270–291.
Baldassarre, G. Di, Kreibich, H., Vorogushyn, S., Aerts, J., Arnbjerg-Nielsen, K., Barendrecht, M., Bates, P., Borga, M., Botzen, W., & Bubeck, P. 2018. Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrology and Earth System Sciences, 22(11), 5629–5637.
Bozorg Haddad, O., Ashofteh, P., & Mariño, M. 2015. Levee layouts and design optimization in protection of flood areas. Journal of Irrigation and Drainage Engineering-ASCE, 141, 04015004.
Bozorg Haddad, O. 2018. Levee layouts and design optimization in protection of flood areas (Retraction of Vol 141, art no 04015004, 2015).
Dierauer, J., Pinter, N., & Remo, J. W. F. 2012. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA. Journal of Hydrology, 450, 1–8.
Garcia, M., Juan, A., & Bedient, P. 2020. Integrating Reservoir Operations and Flood Modeling with HEC-RAS 2D. Water, 12(8), 2259.
Juárez, A., Alfredsen, K., Stickler, M., Adeva-Bustos, A., Suárez, R., Seguín-García, S., & Hansen, B. 2021. A conflict between traditional flood measures and maintaining river ecosystems? A case study based upon the River Lærdal, Norway. Water, 13(14). https://doi.org/10.3390/w13141884
Lagasse, P. F., Clopper, P. E., Pagán-Ortiz, J. E., Zevenbergen, L. W., Arneson, L. A., Schall, J. D., & Girard, L. G. 2009. Bridge scour and stream instability countermeasures: Experience, selection, and design guidance. Third Edition, Volume 1, National Highway Institute, USA.
Mihu-Pintilie, A., Cîmpianu, C. I., Stoleriu, C. C., Pérez, M. N., & Paveluc, L. E. 2019. Using high-density LiDAR data and 2D streamflow hydraulic modeling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water, 11(9). https://doi.org/10.3390/w11091832
Naeem, B., Azmat, M., Tao, H., Ahmad, S., Khattak, M. U., Haider, S., Ahmad, S., Khero, Z., & Goodell, C. R. 2021. Flood hazard assessment for the Tori Levee Breach of the Indus River Basin, Pakistan. Water, 13(5), 604.
Siviglia, A., Stocchino, A., & Colombini, M. 2009. Case study: Design of flood control systems on the Vara River by numerical and physical modeling. Journal of Hydraulic Engineering, 135(12), 1063–1072.
Tang, Y., Leon, A. S., & Kavvas, M. L. 2020. Impact of size and location of wetlands on watershed-scale flood control. Water Resources Management, 34(5), 1693–1707.
Urzică, A., Mihu-Pintilie, A., Stoleriu, C. C., Cîmpianu, C. I., Huţanu, E., Pricop, C. I., & Grozavu, A. 2021. Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multi-reservoir system (NE Romania). Water, 13(1), 57.
USACE. 2021. HEC-RAS River Analysis System Hydraulic Reference Manual. Version 6.0. Hydrologic Engineering Center (HEC), US Army Corps of Engineers.