Effect of water and Salinity Stress on Root Morphological Characteristics and Tomato Yield and Determination of Optimum Yield Point Using Response Surface Methodology (RSM)

Document Type : Original Article

Author

Associate Professor of Moghan College of Agriculture & Natural Resources - University of Mohaghegh Ardabili - Ardabil – Iran

Abstract

In order to model the effect of salinity stress on the yield of greenhouse tomato under moisture regimes conditions, an experiment was conducted in a completely randomized block design with three replications. Treatments included salinity stress at levels 1.5, 2.5, 4, 7 (dsm-1). and amount of water stress at three levels of 50, 60 and 70% of field capacity.  Using a response surface method, the results showed that the best yield model based on the variables of salinity stress and moisture level is the second degree model with a regression coefficient of 0.93., The highest yield, assuming the least available moisture and the highest salinity stress, was 117.9 (gr per plant) with a degree of desirability of 0.6, in 3 (dsm-1) of salinity and 63.6% depletion of field capacity. Other root indices had an increasing trend, except for the main root length, with decrease available water and also in a specific moisture regime with increasing the amount of salinity.  Also, a decreasing trend of yield in each of the moisture regimes treatments was observed with increasing the amount of salinity. Considering the nonlinear effect of changes in moisture regime and salinity greenhouse tomato yield, in order to achieve the best yield, salinity stress should be determined first for each plants

Keywords

Main Subjects


آذرمی، ر. ترابی گیگلو، م. و حسینی، ی. 1398. تأثیر پایه های کدو و تنش آبی بر خصوصیات رشد و عملکرد گوجه فرنگی گلخانه‌ای. علوم و فنون کشت های گلخانه ای, 10(1): 47-58.
بابازاده، ح. علیزاده، ح.­ع. و سرائی­تبریزی، م. 1395. توسعه مدل مفهومی تعدیل شده پاسخ گیاهان به تنش توأمان خشکی و شوری (مطالعه موردی گیاه ریحان)، تحقیقات آب و خاک ایران، 47(2): 281-292.
پاکدل، پ. تهرانی‌فر، ع.  نعمتی، س. ح. لکزیان، ا. و  خرازی، س. م.1390. اثر چهار نوع خاکپوش چیپس چوب، کمپوست زباله شهری، خاک اره و سنگریزه در سه ضخامت مختلف بر رشد درخت چنار، نشریه علوم باغبانی (علوم و صنایع کشاورزی)، 25 (3):296-303.
قائمی، م. بخش کلارستاقی، ک. و نبوی کلات، سو. 1388. مقایسه چند بستر کاشت در خواص کمی گوجه فرنگی گلخانه ای رقم نگین در روش آبکشت. یافته های نوین کشاورزی, 4(14):  157-166.
حسینی، ی. بابازاده، ح. و خاکپورعربلو، ب.1394. ارزیابی توابع کاهش جذب آب گیاه  فلفل در شرایط تنش هم‌زمان خشکی و شوری، نشریه پژوهش آب در کشاورزی، 29(4):  509-522.
سپاسخواه، ع. توکلی، ع. و موسوی، س. ف. 1385. اصول و کاربرد کم آبیاری، کمیته ملی آبیاری و زهکشی ایران، صفحه 288.
سرائی­تبریزی، م. بابازاده، ح. همایی، م. کاوه، ف. و پارسی­نژاد، م. 1395. تعیین حد آستانه کاهش عملکرد ریحان و ارزیابی مدل­های جذب آب تحت شرایط تنش شوری، نشریه آب و خاک (علوم و صنایع کشاورزی)، 30(1):  30-40.
فعالیان، ا. انصاری، ح. کافی، م. علیزاده، ا. و مقدسی، م. 1394. اثر تنش­های هم‌زمان شوری و خشکی بر عملکرد گوجه­فرنگی در کشت بدون خاک، نشریه پژوهش آب در کشاورزی،29(4):  447-463.
همتیان دهکردی، م. و محمدی قهساره، ا. 1390. اثر نوع بستر کشت بر عملکرد و غلظت عناصر غذایی در گوجه فرنگی گلخانه‌ای. دوازدهمین کنگره علوم خاک ایران. تبریز. 
Ahmad, M.A.F., Maher, J.T. and Ibrahim, M. M. 2019. Evaluation of different soilless media on growth, quality, and yield of cucumber (Cucumis sativus L.) grown under greenhouse conditions. 13(08):1388-1401.
Assadian, F., Niazi, A. and Ramezani, M. 2020. Response Surface Modeling and Optimization of Effective Parameters for Zn(II) Removal from Aqueous Solution Using Gracilaria Corticata. Journal of Chemical Health Risks.10(31):213-224.
Asseng, A., Ritchia, J.T. and Smuchker, A.J.M. 1998. Root growth and water uptake during water deficit and recovering in wheat. Plant Soil. 201: 265-273.
Dalvia, V.B., Tiwarib, K.N., Pawadea, M.N., and Phirkea, P.S. 1998. Response surface analysis of tomato production under micro irrigation. Agricultural Water Management, 41: 11-19.
Hee-Don, C., S.J. Youn and Y.J. Choi. 1997. Effect of rootstocks on yield, quality and components of tomato fruits. J. Kor. Soc. Hort. Sci. 38:603-607.
Homaee, M., Dirksen, C., and R.A. Feddes. 2002. Simulation of root water uptake. I. Non uniform transient salinity using different macroscopic reduction functions. Agricultural   Water Management. 57: 89-109.
Jahan, M. and Amiri, M.B. 2018. Optimizing application rate of nitrogen, phosphorus and cattle manure in wheat production: An approach to determine optimum scenario using response-surface methodology. Journal of soil science and plant nutrition, 18(1): 13-26.
Ianne, G. S., Vieira, Reginaldo G., Nobre, Adaan S., Dias and Francisco, W., Pinheir. A. 2016. Cultivation of Cherry tomato under irrigation with saline         water and nitrogen fortilization. Revista Brasileira de Engenharia             Agricola e Ambiental :55-61.
Mahmoodi-Eshkaftaki, M. and Rafiee, M.R., 2020. Optimization of irrigation management: A multi-objective approach based on crop yield, growth, evapotranspiration, water use efficiency and soil salinity, Journal of Cleaner Production, 252:221-232.
Montgomery, D.C. and Myers, R.H. 1995. Response surface methodology: process and product optimization using designed experiments, Raymond H. Meyers and Douglas C. Montgomery, A Wiley-Inter Science Publications.856 p.
Mualem, Y. 1976. A new model predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513–522
Pedrosa, M.C., Lima, L., Heleno, S., Carocho, M., Ferreira, I.C.F.R., Barros, L. 2021. Optimization through Response Surface Methodology of Dynamic Maceration of Olive (Olea europaea L.) Leaves. Biol. Life Sci. Forum 6: 71-82.
Rahman, M. A., Smith, J. G., Stringer, P., and Ennos, A. R. 2011. Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban Forestry & Urban Greening. 10. 185- 192.
Raphael, Y., Schwarz, D., Krumbein, A. and Colla, G. 2010. Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127:172–179.
Rezaverdinezhad, V., Shabanian, M., Besharat, S. and Hasani, A. 2017. Determination of crop water requirement, crop coefficient and water use efficiency of greenhouse-grown cucumber and tomato (Case study: Urmia region). Journal of Science & Technolgy Greenhouse Culture, 8(3):27-40.
Ruiz, J.M., A. Belakbir, A. Lopez-Cantarero and L. Romero. 1997. Leaf-macronutrient content and yield in grafted melon plants: A model to evaluate the influence of rootstock genotype. Sci. Hort. 71:227–234.
Soltani, M. and Soltani, J. 2016. Determination of Optimal Combination of Applied Water and Nitrogen for Potato Yield Using Response Surface Methodology (RSM). Biosc.Biotech.Res.Comm. 9(1): 46-54
Van Genuchten, M.Th. and Hoffman, G. J. 1984. Analysis of crop salt tolerance date. P. 258-271. In I. Shainberg and J. shalhevet (ed.) Soil salinity under irrigation process and management. Ecol. Stud. 51.Springer-Verlag, New      York.
Wang, Z., Liu, Z., Zhang, Z. and Liu, X. 2009. Subsurface drip irrigation scheduling for cucumber (Cucumis sativus L.) grown in solar greenhouse based on 20cm standard pan evaporation in Northeast China. Scientia Horticulture, 123 (1): 51–57.
Wang., Yun, J., Shi, P., Li, Zh., Li, Peng., Xing, Y. 2019.  Root Growth, Fruit Yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels. Journal of Plant Growth Regulation 38(2): 400-415.