Comparative Study on the Models and Pedotransfer Functions for Estimating of Parameters Describing Soil moisture Characteristic Curve (Case Study: Mahidasht, Kermanshah province)

Document Type : Original Article

Authors

1 Water Engineering Department, Faculty of Agriculture, Razi University, Kermanshah, Iran

2 Department of Water Engineering, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah,

Abstract

Although several mathematical models have been proposed to describe the soil moisture characteristic curves, not one model is suitable for all soil types. The purpose of this study was to determine the best model and Pedotransfer function to describe this curve in Mahidasht plain, Kermanshah province. Soil samples were collected from four locations at three depths. The soil moisture characteristic curve of the samples was determined using sandbox and pressure plates. The coefficients of van Genuchten and Brooks-Cory were determined based on measured data using RETC software. The estimated curve by RETC software was compared with the curve drawn based on measured data. The results showed that all models have almost the same estimations and only the Brooks-Corey model overestimates the moisture at low suctions. Based on the results, it can be stated that among the four studied models, the van Genuchten-Bordin model with m = 1-2/n (RMSE = 0.01 and ME = 0.002) is the most suitable model in the study area. The results also showed that the studied Pedotransfer functions have acceptable accuracy for estimating the soil moisture characteristic curve and the modified Sepaskhah-Bondar model (RMSE = 0.1 and ME = 0.02) is the best Pedotransfer function for soils of the Mahidasht. Then the parameters of the most suitable PEDOTRANSFER function for the soils of the study area were calibrated. Although the results of this study can be useful for use in other soils, the coefficients of these functions should be calibrated in each region.

Keywords

Main Subjects


بابائیان، ا.، همایی، م.، نوروزی، ع. ا. 1393. عملکرد توابع انتقالی طیفی پارامتریک و نقطه‌ای برای برآورد منحنی مشخصه رطوبتی خاک. مجله تحقیقات آب و خاک ایران، دوره 45، شماره 4، ص. 475-490.
جاویدی، ع.، شعبانی، ع.، امیری، م. ج. 1398. تأثیر کاربرد درصد ذرات خاک در مقایسه با خصوصیات هندسی ذرات خاک بر دقت معادلات انتقالی منحنی مشخصه آب خاک و نقطه بحرانی آن. نشریه علوم آب و خاک، سال 23، شماره 1، ص. 237-252.
حق­وردی، ا.، قهرمان، ب.، جلینی، م.، خشنود یزدی، ع. ا. عربی ، ز.1390. مقایسه روش­های مختلف هوش مصنوعی در مدلسازی منحنی مشخصه رطوبتی خاک. مجله پژوهش های حفاظت آب و خاک، جلد هجدهم، شماره 2. ص. 65-84.
فولادمند، ح. ر.، گلکار، پ. 1397. برازش مدلهای مختلف منحنی مشخصه آب خاک بر 30 نمونه خاک استان فارس. نشریه پژوهشهای حفاظت آب و خاک،دوره 25، شماره 1، ص. 319-326.
فولادمند، ح. ر.، هادی­پور، س.1390. ارزیابی توابع انتقالی پارامتریک برای تخمین منحنی مشخصه آب خاک در استان فارس. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک. سال 15. شماره 58 ، ص 37-25.
 
قربانی دشتکی، ش.، همایی .م. 1381.   برآورد پارامتریک توابع هیدرولیکی بخش غیر اشباع خاک با استفاده از توابع انتقالی، مجله  تحقیقات مهندسی کشاورزی، شماره 10 ، جلد4، ص .16-1.
عباسی، ف.، 1392. فیزیک خاک پیشرفته. ویرایش اول دانشگاه تهران. 250 ص.
مجیدی گنجی، س.، بیات، ح.، صداقت، آ. 1397. کاربرد و مقایسه توابع انتقالی بین­المللی برای خاکهای استان مازندران و آذربایجان شرقی. نشریه دانش آب و خاک، جلد 28، شماره 4، ص. 197-209.
مؤذن زاده، ر.، قهرمان، ب.، داوری، ک.، خشنودی یزدی، ع.ا. 1388. ارزیابی عملکرد چند تابع انتقالی داخلی در برآورد منحنی نگهداشت رطوبتی. نشریه آب و خاک،جلد 23 ، شماره 4، ص.66-55.
نبی­زاده، ا. بیگی هرچگانی، ح. 1390 .کیفیت برازش چند مدل تجربی منحنی رطوبتی به خاک­های شهرستان لردگان از استان چهارمحال و بختیاری. نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 25، شماره3، ص 645-634.
Alagna, V., V. Bagarello, S. Di Prima, G. Giordano and M. Iovino. 2016. Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Journal of Geoderma, 267: 24–33.
Bayat, H., M. Neyshabouri, K. Mohammadi and N. Nariman-Zadeh. 2011. Estimating water retention with Pedotransfer functions using multi-objective group method of data handling and ANNs. Journal of Pedosphere, 21:107-114.
Bayat, H., M. Neyshabouri, K. Mohammadi, N. Nariman-Zadeh, M. Irannejad and A.S. Gregory. 2013. Combination of artificial neural networks and fractal theory to predict soil water retention curve. Journal of Computers and Electronics in Agriculture, 92:92-103
Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Journal of Soil Science, 9:177–213.
Brooks, R. H. and A. T. Corey. 1964. Hydraulic properties of porous media. Hydrology Paper No. 3, Colorado State University, Fort Collins, Colorado.
Campbell, G. S. 1985. Soil physics with BASIC, Elsevier, New York.
Castellini, M., M. Niedda, M. Pirastru and D. Ventrella. 2014. Temporal changes of soil physical quality under two residue management systems. Journal of Soil Use and Management. 30(3): 423–434.
Castellini, M., M. Iovino, M. Pirastru, M. Niedda and V. Bagarello. 2016. Use of Best procedure to assess soil physical quality in the Baratz Lake catchment (Sardinia, Italy). Journal of Soil Science Society American, 80:742–755.
Da Silva, A.C., R.A. Armindo, A.S. Brito and M.G. Schaap. 2017. SPLINTEX: A physically based Pedotransfer function for modeling soil hydraulic functions. Journal of Soil and Tillage Research, 174: 261-272.
Dexter, A.R., E.A. Czyz, G. Richard and A. Reszkowska. 2008. A user-friendly water
retention function that takes account of the textural and structural pore spaces in soil.
Journal of Geoderma, 143:143-153.
Ferrara, R.M., G. Mazza, C. Muschitiello, M. Castellini, A.M. Stellacci, A. Navarro, A. Lagomarsino, C. Vitti, R. Rossi and G. Rana. 2017. Short-term effects of conversion to no-tillage on respiration and chemical- physical properties of the soil: a case study in a wheat cropping system in semi-dry environment. Italian journal of Agro meteorology, 47–58.
Khodaverdiloo, H., H.K. Cheraghabdal, V. Bagarello, M. Iovino, H. Asgarzadeh and S.G. Dashtaki. 2017. Ring diameter effects on determination of field-saturated hydraulic conductivity of different loam soils. Journal of Geoderma, 303: 60–69.
Iovino, M., M. Castellini, V. Bagarello and G. Giordano. 2016. Using static and dynamic indicators to evaluate soil physical quality in a Sicilian area. Journal of Land Degradation and Development, 27(2): 200–210.
Manyam, C., C.L. Morgan, J.L. Heilman, D. Fatondji, B. Gerard and W.A. Payne.
2007. Modeling hydraulic properties of sandy soils of Niger using Pedotransfer
functions. Journal of Geoderma, 141. 407- 415.
Nemes, A. and W.J. Rawls. 2006. Evaluation of different representations of the particle-size distribution to predict soil water retention. Journal of Geoderma, 132. 47–58.
Pirastru, M., M. Niedda and M. Castellini. 2014. Effects of maquis clearing on the properties of the soil and on the near-surface hydrological processes in a semi-arid Mediterranean environment. Journal Agricultural Engineering Research, 428. 176-187.
Pirastru, M., V. Bagarello, M. Iovino, R. Marrosu, M. Castellini, F. Giadrossich and M. Niedda. 2017. Subsurface flow and large-scale lateral saturated soil hydraulic conductivity in a Mediterranean hillslope with contrasting land uses. Journal of Hydrology and Hydromechanics, 65(3): 297-306.
Schaap, M. G. and F.J. Leij. 1998. Using neural networks to predict soil water retention and soil hydraulic conductivity. Journal of Soil Tillage Research, 47.37–42.
Sepaskhah, A. R. and H. Bondar. 2002. Estimating van Genuchten soil water retention curve from some soil physical properties. Iran Agricultural Research, 21. 105-118.
Shirazi, M.A. and L. Borsma. 1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal. 48:142-147.
Tomasella, J., Y. Pachepsky, S. Crestana and W.J. Rawls. 2003. Comparison of two techniques to develop Pedotransfer functions for water retention. Journal of Soil Science Society American, 67. 1085–1092.
Twarakavia, N.K.C., J. Simunek and M.G. Schaap. 2009. Development of Pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Journal of Soil Science Society American, 73. 1443-1452.
van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity for Soils. Journal of Soil Science Society America, 44. 892-898.
van Genuchten, M. Th., F. J. Leij, and S. R. Yates. 1991. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, Version 1.0. EPA Report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside, California.
Ventrella, D., M. Charfeddine, L. Giglio and M. Castellini. 2012. Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern Italy: optimum sowing and transplanting time for winter durum wheat and tomato. Italian Journal of Agronomy, 7(1): 109-115.
Vereecken, H., J. Maes, J. Feyen and P. Darius. 1989. Estimating the soil moisture retention characteristic from texture, bulk density and carbon content. Journal of Soil Science, 148(6): 389-403.
Walkley, A. and I. A. Black. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Journal of Soil Science, 37(1): 29-38.