Hydraulic Investigation of Blades Angle Effect on the Gorlov Turbine Efficiency in Low-speed Water Flow

Document Type : Original Article

Authors

Department of Civil Engineering, Faculty of Engineering, Arak University, Arak, Iran

10.22125/iwe.2020.120714

Abstract

A fundamental solution to save fossil fuels and to avoid air pollution is using small water turbines. In this study, an example of a hydrodynamic turbine that can generate electricity in low-flow and low-velocity flows is proposed. After extensive research on the problem's theory, the 3D shape of the turbine blades was modelled in SOLIDWORKS software and introduced as an input in the FLOW-3D model. For each turbine with different blade angles and for different depths of flow, the interaction between the fluid and blades were evaluated and analyzed to determine the turbine that has the highest torque and angular velocity. The basic premise of this study is that the turbine, which has the maximum angular velocity and torque speed, without oscillation and mutation and without the changes of torque direction, certainly has more power and has the optimal blade angle and flow conditions. All turbines had the highest torque and angular velocity at a discharge of 20  and at the depth of 5 cm and therefore had more power. Accordingly, it was concluded that the most suitable location for greater efficiency and greater power of the turbine is its location near the flow surface. Also a turbine with a blade angle of 70 degrees had the best efficiency among the turbine blades with respect to the created torque and angular velocity.

Keywords