On the effect of relative flood depth on flow hydraulics in meandering compound channels

Authors

1 Ph.D. Candidate in Civil Eng. Water & Hydraulic Structures, Department of Civil Engineering, Faculty of Eng., Urmia University

2 Department of Civil Eng., Faculty of Eng., Urmia University

3 University of Zanjan

10.22125/iwe.2021.128113

Abstract

The rivers, as the main watercourse and natural drainages, always play a significant role in the conveyance of flood flows. During floods, the water crosses the main section of the river and enters the floodplains. In this case the river crossing becomes a compound cross section. In present research work, by studying meandering compound channels, the effect of changing relative depth of flood currents on the hydraulic flow conditions and the rate of discharge are investigated. For this purpose, six channels with different sinusoidal rates at three relative depths with different flood rates were investigated by FLOW3D software. The results of numerical simulation show that by increasing relative depths from 0.26 to 0.45 (73% increase), the depth averaged velocity in all channels increased by 25% and the rate of discharge passing through the main channel decreased by 33%. Also, the results of this study show that the bed shear stress near the inner arch of the main channel is more than the outer arch and by reducing the relative depth in the compound channel, the amount of bed shear stress and flow velocity decreases. And the amount of shear stress of the inner arch wall of the main channel in all channels is higher than that of the outer arch wall, and by increasing the relative depth the amount of shear stress of the wall is increased.

Keywords


     بهرام پور، م.، بارانی، غ و ذونعمت کرمانی، م. 1398. پیش بینی دبی جریان در مقاطع مرکب، مقایسه روش‌های داده محور و تجربی. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، سال 9، شماره 36، ص 25-39.
    قاسم زاده، ف. 1392. شبیه سازی مسائل هیدرولیکی در Flow 3D . انتشارات نوآور، تهران.
    نجفیان، ش.، یونسی، ح.، پارسایی، ع و ترابی پوده، ح. 1396. مدلسازی عددی و فیزیکی خصوصیات جریان در کانال مرکب منشوری با زبری ناهمگن. نشریه تحقیقات کاربردی مهندسی سازه­­ های آبیاری و زهکشی، جلد 18، شماره68، ص1-16.
    نقوی، م.، محمدی، م و مهتابی، ق. 1398. سرعت جریان در کانال مرکب پیچان تحت تأثیر ضریب خمیدگی. مجله مهندسی عمران مدرس، دوره19، شماره 5، ص208-219.
    Carling, P.A., Cao, Z., Holland, M. J., Ervine, D. A. and Babaeyan-Koopaei, K. 2002. Turbulent flow across a natural compound channel, Water Resources Research, 38(12).
    De Marchis, M. and Napoli, E. 2008. The effect of geometrical parameters on the discharge capacity of meandering compound channels, Advances in Water Resources, 31:1662–1673.
    Ervine, D.A. and Ellis, J. 1987. Experimental and computational Aspects of Overbank Flood-Plain Flow, Transactions of the Royal Society of Edinburgh, 78(4): 315-325.
    Ervine, D.A., Willetts, B.B., Sellin R.H.J. and Lorena M. 1993. Factors affecting conveyance in meandering compound flows, Journal of Hydraulic Engineering, 119(12):1383–1399.
    Ervine, D.A., Babaeyan-Koopaei, K. and Sellin, R.H.J. 2000. Two- dimensional solution for straight and meandering overbank flows, Journal of Hydraulic Engineering, ASCE, 126(9): 653-669.
    Knight, D.W. and Demetriou, J. D. 1983. Flood plain and main channel flow interaction, Journal of Hydraulic Engineering, 109(8): 1073-1092.
    Knight, D.W. and Sellin, R. H. J. 1987. The SERC flood channel facility, Journal of Institution of Water and Environment Management, 41(4): 198-204.
    Liu, C., Luo, X., Liu, X.N. and Yang, K.J. 2013. Modeling depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation, Advances in Water Resources, 60: 148-159.
    Liu, C., Wright, N., Liu, X. and Yang, K.2014. An analytical model for lateral depth-averaged velocity distributions along a meander in curved compound channels, Advances in Water Resources, 74:26–43.
    Liu, C., Shan, Y., Liu, X. and Yang, K. 2016. Method for assessing stage-discharge in meandering compound channels, J. ICE-Water Management, 169(1):17-29.
    Liu, C., Shan, Y., Liu, X., Yang, K. and Liu, H. 2016. The effect of floodplain grass on the flow characteristics of meandering compound channels, Journal of Hydrology, 542:1-17.
    Rameshwaran, P. and Shiono, K. 2007. Quasi two-dimensional model for straight overbank flows through emergent vegetation on floodplains, Journal of Hydraulic Research, 45(3): 302-315.
    Shiono, K. and Knight, D. W. 1991. Turbulent open channel flows with variable depth across the channel, Journal of Fluid Mechanics, 222: 617-646.
    Shiono, K. and Muto, Y. 1998. Complex flow mechanisms in compound meandering channels with overbank flow, Journal of Fluid Mechanics, 376: 221–261.
   Shiono, K.,Muto, Y., Knight, D.W. and Hyde, A.F.L. 1999. Energy losses due to secondary flow and turbulence in meandering channel for overbank flows,Journal of Hydraulic Research,37(5):641-664.
    Spooner, j. 2001. Flow structures in a compound meandering channel with flat and natural bedforms, Ph.D. thesis, Loughborough University, UK.
    Tang, X. and Knight, D.W. 2008. Lateral depth-averaged velocity distributions and bed shear in rectangular compound channels, Journal of Hydraulic Engineering, 134(9): 1337-1342.
    Tominaga, A., Nezu, I., Ezaki, K. and Nakagawa, H. 1989. Three-dimensional turbulent structure in straight open channel flows, Journal of Hydraulic Research, 27(1): 149-173.
    Yang, K. J., Cao, S.Y. and Knight, D. W. 2007. Flow patterns in compound channels with vegetated floodplains, Journal of Hydraulic Engineering, 133(2):148-159.
    Yang, K.J., Nie, R.H., Liu, X.N. and Cao, S.Y. 2013. Modeling depth-averaged velocity and boundary shear stress in rectangular compound channels with secondary flows, Journal of Hydraulic Engineering, 139(1): 76-83.