Investigating the causes of rivers discharge reduction to Lake Urmia (Case study: rivers of the south and west of Lake Urmia)

Document Type : Original Article

Authors

1 Instructor of East Azerbaijan Agricultural and Natural Resources Research and Training Center

2 Prof, Dep. of Hydrology and Water Resources, Shahid Chamran University of Ahvaz, Iran

3 Department of Hydrology and Water Resources, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.

4 Assistant Professor of Agricultural and Natural Resources Research and Training Center of East Azerbaijan

Abstract

In any country, the management of water resources in watersheds is very important, and managers try to protect these resources by providing management packages. One of the basins that have been considered by managers in the recent years is the catchment area of Lake Urmia located in the northwestern of Iran. In this study, considering the complexity of the rainfall, temperature, evaporation, discharge of hydrometric stations, water volume of the Lake, the contribution of each factor on the rate of decreasing water volume of Urmia Lake was determined. To evaluate the changes in complexity, Wavelet-Entropy combination method was used. To calculate the value of complexity, 41 years seasonal time series were used (period of 1977-2018) for the selected hydrological units of the south and west of Urmia lake. Then, the time series were divided into three equal parts, and the complexity changes were calculated in these intervals based on the wavelet-entropy criterion (SWS). The results showed that SWS of lake water volume, rivers discharge flow and precipitation were reduced in entire time, however, the SWS of temperature and evaporation increased. Generally, it seems that the rivers discharge flow was the main cause of reducing the volume of lake water, and precipitation, temperature, and evaporation parameters were in the next ranks.

Keywords

Main Subjects


بهاءلو‏هوره، ف.، ا. راست‏بود. 1397. تأثیر خشک شدن دریاچه ارومیه بر اراضی اطراف آن با استفاده از سنجش از دور، پایان­نامه کارشناسی‏ارشد عمران- سنجش از دور، دانشگاه مرند.
حسن­زاده، ی. 1391. بررسی علل کاهش تراز آب دریاچه ارومیه و ارائه راهکارهای علاج بخشی، پنجمین کنگره بین‏المللی دانشکده مهندسی عمران، دانشگاه تبریز.
زاهدی قره­آغاج، م.، ی. قویدل رحیمی. 1386. تعیین آستانۀ خشکسالی و محاسبۀ میزان بارش قابل اعتماد. پژوهش های جغرافیایی، 34:59-21.
سلگی، ا. 1393. پیش­بینی جریان رودخانه با مدل ترکیبی شبکه عصبی مصنوعی-موجک و مقایسه آن با روش­های سیستم استنتاج فازی عصبی تطبیقی و شبکه عصبی مصنوعی (مطالعه موردی: رودخانه گاماسیاب نهاوند). پایان­نامه کارشناسی ارشد در رشته مهندسی منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
کاظم‏زاده، م.، آ. ملکیان، ع.ر. مقدم‏نیا و ش. خلیقی­سیگارودی. 1396. تحلیل تغییرات ناگهانی و ناهمگنی متغیرهای هیدرواقلیمی (مطالعۀ موردی: حوضۀ آبخیز آجی‏چای). اکوهیدرولوژی، (1)4: 175-163.
گلزاری پرتو، ل. 1394. شبیه­سازی اثر خشک شدن دریاچه ارومیه بر بارش منطقه شمال غرب ایران، جغرافیا و مخاطرات محیطی، (4)147:14-137.
لاری، ع.ر.، ج. مهرکار و م.س. پیشوایی. 1393. ارزیابی سیاست‏های مواجهه با بحران حوضه آبریز دریاچه ارومیه با رویکرد پویایی­شناسی سیستم، نشریه علمی پژوهشی مدیریت فردا، (40)62:13-37.
نورانی، و.، س. رنجبر و ف. توتونچی. 1394. بررسی تغییرات فرایندهای هیدرولوژیکی با استفاده از معیاره موجک-آنتروپی، مطالعه موردی: دریاچه ارومیه. نشریه مهندسی عمران و محیط زیست، (3)45: 75-86.
Asadi, S., J. Shahrabi, P. Abbaszadeh and S. Tabanmehr. 2013. A New Hybrid Artificial Neural Networks for Rainfall–Runoff Process Modeling. Neurocomputing, 121: 470-480.
Chan, D., Q. Wu, G. Jiang and X. Dai. 2016. Projected Shifts in Köppen Climate Zones over China and Their Temporal Evolution in CMIP5 Multi-Model Simulations: Advances in Atmospheric Sciences, 33: 283–293.
Chou, M. 2014. Complexity Analysis of Rainfall and Runoff Time Series Based on Sample Entropy in Different Temporal Scales. Stochastic Environmental Research and Risk Assessment, 28)6): 1401-1408.
Huang, F., Z. Xia, N. Zhang, Y. Zhang and J. Li. 2011. Flowcomplexity analysis of the upper reaches of the Yangtze river China. Journal of Hydrologic Engineering, 16: 914-919.
Kim, T.W. and J.B. Valdes. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Jornal of Hydrologic Engineering, 8(6): 319-328.
Mishra, A.K., M. Özger, and V.P. Singh. 2009. An entropy-based investigation into the variability of precipitation. Journal of Hydrology, 370(1-4): 139-154.
Shannon, C.E. 1948. A mathematical theory of communications I and II. Bell System Technical Journal, 27: 379-443.
Singh, V.P. 2011. Hydrologic Synthesis Using Entropy Theory: Review. Journal of Hydrologic Engineering, 16(5):  421-433.
Solgi, A., V. Nourani and A. Pourhaghi. 2014. Forecasting Daily Precipitation Using Hybrid Model of Wavelet-Artificial Neural Network and Comparison with Adaptive Neuro Fuzzy Inference System (Case Study: Verayneh Station, Nahavand). Advances in Civil Engineering, 2014:1-12.