The Deficit Irrigation Effect with Salt Water on Yield and Growth Traits of Spinach Plant (Spinacia Oleraceae L.) in an Arid Climate

Document Type : Original Article

Authors

1 Water Science and Engineering Department, Kashmar Higher Education Institute, Kashmar, Iran

2 Assistant Prof. Water & Science Engineering, Kashmar Higher Education Institute

3 PhD graduate, Water Science and Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad,

4 Assistant Professor of Water Engineering Department, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Iran

Abstract

Due to the severe shortage of fresh water in arid and semi-arid regions, farmers are forced to use deficit-irrigation techniques along with salt water. In order to minimize salinity and water stresses impacts on the yield and yield components of spinach plant, separately and mutually, a pot experiment was performed from November 2, 2018 to January 18, 2019. The experiment was performed as factorial in the form of a completely randomized design with four replications including three irrigation levels (consisting complete irrigation 100% water requirement =W1, W2=75% W1, and W3=50% W1) and three salinity factors (drinking water S1=0.75, S2=4, S3=8 dS/m) in Kashmar's arid climate. The results showed that separate salinity and deficit irrigation stress had a significant effect on the plant traits including the wet weight of aerial part, leaf surface, plant height, stem height, root length, the dry weight of aerial part and the dry weight of the root, but the mutual effect of salinity and deficit irrigation on the mentioned traits was not significant. As salinity and deficit irrigation increased, the morphological properties of the plant decreased; for example, the maximum wet weight of the plant's aerial part was 147.15 grams in the plant related to W1S1 treatment and its minimum was 38.36 grams in the plant related to W3S3 treatment. The results of comparing the average of plant growth traits showed that there was no significant difference between the treatment of 100% water requirement with salinities of 0.75 and 4 dS/m, but in the salinity treatment control (0.75 dS/m) there was a significant difference between various levels of deficit irrigation. In regard to the above results, it can be said that spinach plant is more sensitive to water stress than salinity stress and applying water stress to the plant during the growing season should be avoided

Keywords

Main Subjects


بی­نام. 1397. سیمای آب استان خراسان رضوی. شرکت آب منطقه­ای خراسان رضوی، معاونت برنامه­ریزی، دفتر برنامه­ریزی و بررسی­های اقتصادی، گروه آمار، 29 صفحه.
پوزش شیرازی، م و م. رخشنده رو. 1387. بررسی اثرات رژیم آبیاری، تراکم بوته و روش کشت بر عملکرد گیاه اسفناج (Spinacia Oleracea L.). (مطالعه موردی: استان بوشهر). مجله آب و خاک (علوم و صنایع کشاورزی). 22 (2): 198- 187.
توکلی، ح.، ن. توکلی، س. ا. کلانتر احمدی و ا. یوسفی کردلر. 1394. تأثیر آرایش کشت بر کارایی استفاده از تشعشع در چند رقم آفتابگردان. مجله پژوهش در اکوسیستم­های زراعی. 2 (3): 21- 13.
جلالی، ا. ه و پ. جعفری. 1395. تأثیر محلول­پاشی پتاسیم در کاهش اثرات مضر شوری در گیاه اسفناج (Spinacia oleraceae L ). نشریه علوم باغبانی (علوم و صنایع کشاورزی). 30 (3): 208- 201.
ذرتی­پور، ا.، ا. سلطانی محمدی و ن. عالم­زاده انصاری. 1398. بررسی عملکرد و بهره­وری مصرف آب کاهوبرگی تحت تنش خشکی و شوری در شرایط گلخانه­ای. نشریه آبیاری و زهکشی ایران. 2 (13): 461- 450.
شیخی، ج و ع. رونقی. 1391. اثر سطوح نیتروژن و شوری بر عملکرد، جذب نیتروژن، غلظت نیترات و کلروفیل اسفناج و برخی ویژگی­های خاک پس از برداشت در یک خاک آهکی. مجله علوم و فنون کشت­های گلخانه­ای. 3 (12): 11- 1.
شیخی، ج و ع. رونقی. 1392. اثر شوری و کاربرد ورمی­کمپوست بر غلظت عناصر غذایی و عملکرد اسفناج (رقم ویروفلی) در یک خاک آهکی. مجله علوم و فنون کشت­های گلخانه­ای. 4 (13): 92- 81.
عالی نژادیان بیدآبادی، ا.، م. حسنی و ع. ملکی. 1397. تأثیر مقدار و شوری آب بر شوری خاک و رشد و غلظت عناصر غذایی اسفناج در گلدان. مجله تحقیقات آب و خاک ایران، 49 (3): 651- 641.
علیزاده. 1383. کیفیت آب در آبیاری، انتشارات آستان قدس رضوی، 96 صفحه.
گویلی، ا.، س. ا. موسوی و ع. ا. کامکار حقیقی. 1395. اثر بیوچار کود گاوی و تنش رطوبتی بر ویژگی­های رشد و کارایی مصرف آب اسفناج  در شرایط گلخانه­ای. نشریه پژوهش آب در کشاورزی، 30 (2): 259- 243.
محمدی، م.، ع. لیاقت و ح، مولوی. 1390. اثر توأم تنش شوری و خشکی بر عملکرد و اجزای عملکرد گوجه فرنگی در شرایط مزرعه­ای. مجله علوم و مهندسی آبیاری (مجله علمی کشاورزی). 34 (1): 23- 15.
همائی، م. 1381. واکنش گیاهان به شوری. انتشارات کمیته آبیاری و زهکشی ایران، 107 صفحه.
هنرجو، ن. 1389. خاک­ها و آب­های شور سدیمی. انتشارات دانشگاه آزاد اسلامی واحد خوراسگان، 224 صفحه.
Ashraf, M. 2010. Inducing drought tolerance in plants: recent advances. Biotechnology advances, 28(1), 169-183.‏
 Díaz-López, L., V. Gimeno, I. Simón, V. Martínez, W.M. Rodríguez-Ortega and F.García-Sánchez. 2012. Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural Water Management 105: 48-56.
Ekinci, M., S. Ors, U. Sahin, E. Yildirim and A. Dursun. 2015. Responses to the irrigation water amount of spinach supplemented with organic amendment in greenhouse conditions. Communications in Soil Science and Plant Analysis, 46(3), 327-342.‏
Ferreira, J., D. Sandhu, X. Liu and J. Halvorson. 2018. Spinach (Spinacea oleracea L.) Response to Salinity: Nutritional Value, Physiological Parameters, Antioxidant Capacity, and Gene Expression. Agriculture, 8(10), 163.‏
Jabeen, M., N. A. Akram and M. A. A. AZIZ. 2019. Assessment of Biochemical Changes in Spinach (Spinacea oleracea L.) Subjected to Varying Water Regimes. Sains Malaysiana, 48(3), 533-541.‏
Muscolo, A., A. Junker, C. Klukas, K. Weigelt-Fischer, D. Riewe and T. Altmann. 2015. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. Journal of Experimental Botany 66: 5467-5480.
Ors, S and D. L. Suarez. 2016. Salt tolerance of spinach as related to seasonal climate. Hort Sci (Prague) 43: 33–41.‏
Ors, S and D. L. Suarez. 2017. Spinach biomass yield and physiological response to interactive salinity and water stress. Agricultural water management, 190, 31-41.‏
Pasternak, D and Y. De Malach. 1994. Handbook of plant and crop stress. Marcel Dekker, New York, NY.
Sahin, U., M. Ekinci, S. Ors, M. Turan, S. Yildiz and E. Yildirim. 2018. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240, 196-204.‏
Shannon, M. C., C. M. Grieve, S. M. Lesch and J. H. Draper. 2000. Analysis of salt tolerance in nine leafy vegetables irrigated with saline drainage water. Journal of the American Society for Horticultural Science, 125(5), 658-664.‏
  Ünlükara, A., T. Yurtyeri and B. Cemek. 2017. Effects of Irrigation water salinity on evapotranspiration and spinach (Spinacia oleracea L. Matador) plant parameters in Greenhouse Indoor and Outdoor Conditions. Agronomy Research, 15(5), 2183-2194.‏
Wang, W., B. Vinocur and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.‏
Xu, C and B. Mou. 2016. Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. Journal of the American Society for Horticultural Science, 141(1), 12-21.‏
Yang, H., T. Du, X. Mao, R. Ding and M. K. Shukla. 2019. A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model. Agricultural Water Management, 213, 116-127.‏