Investigation of the Using Heavy Metals-Contaminated Water with Subirrigation in Canola Cultivation

Document Type : Original Article

Authors

1 Department of Irrigation & Reclamation Engineering, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

2 Department of Irrigation and Reclamation Engineering, Faculty of Agriculture Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

3 Asociated Professor, Agricultural Engineering Research Department, Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran

Abstract

One of the ways out of the water crisis is to use polluted and non-conventional water. In this regard, a study was conducted in 2017 and 2018 in the Agricultural and Natural Resources College, the University of Tehran in the form of a completely randomized factorial design with four treatments, three replications, and a total of 12 experimental plots in the lysimeter environment. Experimental treatments included surface irrigation with contaminated water by heavy metals (SRC), surface irrigation with conventional water or control treatment (SRF), subirrigation with contaminated water by heavy metals (SBC), and subirrigation with conventional water (SBF). The texture of the soil inside the lysimeters was sandy loam, its pH was 7.4, and the heavy metals used were copper, zinc, and lead. The results showed that the highest copper concentration in SBC treatment was observed at a depth of 75 cm, which was 43% less than the maximum amount in SRC treatment, and 25 cm depth, which was significant at the level of 5%. Also, there was a difference between the maximum amount of soil zinc on SRC and SBC treatment of more than 4.2 mg/kg, and in subirrigation, 32% less zinc was absorbed into the soil, which was significant at the level of 5%. The average amount of copper uptake by the plant in SRC treatment was 4.97 mg/kg, which was 80% and 70% increase in copper uptake, respectively, compared to control and SBC treatment, and this difference was significant at the level of 1%. In general, top-down motion (SRC) is higher than bottom-up motion (SBC), indicating the use of heavy metal contaminated water in subirrigation.

Keywords

Main Subjects


آتش­پز، ب.، رضاپور،، س. و قائمیان، ن. 1397. اثرات آبیاری با فاضلاب تصفیه‌شده بر غلظت، توزیع و آلودگی بعضی عناصر سنگین خاک. آب و خاک، دوره 32، شماره 3، ص 585-573.
ارفعی نیا، ح.، رنجبر وکیل‌آبادی، د.، سیفی، م.، اسدگل، ز. و هاشمی، س. ع. 1395. بررسی غلظت و ارزیابی خطر (Risk Assessment) فلزات سنگین ناشی از مصرف محصولات کشاورزی در مزارع مختلف شهرستان دیر، بوشهر. طب جنوب، دوره 19، شماره 5، ص 854-839.
پورغلام آمیجی، م.، لیاقت، ع.، ولی، م. ح. و پارسامهر، ح. ر. 1398. ساخت حسگر رطوبتی به‌منظور آبیاری هوشمند و تعیین محل مناسب نصب آن برای دستور توقف آبیاری با هدف جلوگیری از تلفات آب. مدیریت آب در کشاورزی، دوره 6، شماره 2، ص 36-21.
شاکرمی، م. و معروفی، ص. 1398. اثر فاضلاب و لجن فاضلاب بر جذب برخی فلزات سنگین در خاک و گیاه نعناع (Mentha spicata L.). محیط‌شناسی، دوره 45، شماره 1، ص 15-1.
صیادمنش شیاده، س. م.، قاجارسپانلو، م. و بهمنیار، م. ع. 1394. بررسی میزان برخی عناصر سنگین در خاک و گیاه کلزا در مزارع تحت آبیاری با پساب شهرک صنعتی آمل. پژوهش آب در کشاورزی، دوره 29، شماره 2، ص 155-141.
نصر آزادانی، آ. و هودجی، م. 1393. ارزیابی تأثیر یک نمونه پساب صنعتی بر آلودگی خاک با فلزات سنگین. علوم و تکنولوژی محیط‌زیست، دوره 16، شماره 1، ص 389-379.
یزدان­دوست، ف. و نوروزی، م. م. 1399. بررسی نقش آب­های غیرمتعارف (بازچرخانی و نمک‌زدایی) در نواحی خشک با رویکرد مدیریت‌ بهم‌ پیوستۀ منابع آب. مهندسی آبیاری و آب ایران، دوره 10، شماره 3، ص 141-127.
یزدانی، ع.، صفاری، م. و رنجبر، غ. 1396. اثر آبیاری با فاضلاب شهری تصفیه‌شده بر عملکرد دانه و تجمع فلزات سنگین در دانه ژنوتیپ­های جو. علوم زراعی ایران. دوره 19، شماره 4، ص 296-284.
Ahmad, K., Ejaz, A., Azam, M., Khan, Z. I., Ashraf, M., Al-Qurainy, F. ... & Valeem, E. E. 2011. Lead, cadmium and chromium contents of canola irrigated with sewage water. Pak J Bot, 43(2): 1403-1410.
Bahmanyar, A. 2008. Effects of Long‐Term Irrigation using Industrial Wastewater on Soil Properties and Elemental Contents of Rice, Spinach, Clover, and Grass. Communications in soil science and plant analysis, 39(11-12): 1620-1629.
Jahany, M., & Rezapour, S. 2020. Assessment of the quality indices of soils irrigated with treated wastewater in a calcareous semi-arid environment. Ecological Indicators, 109: 105800.
Mani, D., Sharma, B., Kumar, C., & Balak, S. 2013. Depth-wise distribution, mobility and naturally occurring glutathione based phytoaccumulation of cadmium and zinc in sewage-irrigated soil profiles. International Journal of Environmental Science and Technology, 10(6): 1167-1180.
Pourgholam-Amiji, M., Liaghat, A., Ghameshlou, A. N., & Khoshravesh, M. 2021. The evaluation of DRAINMOD-S and AquaCrop models for simulating the salt concentration in soil profiles in areas with a saline and shallow water table. Journal of Hydrology, 598: 126259.
Sahay, S., Iqbal, S., Inam, A., Gupta, M., & Inam, A. 2019. Waste water irrigation in the regulation of soil properties, growth determinants, and heavy metal accumulation in different Brassica species. Environmental monitoring and assessment, 191(2): 107.
Wei, Z., Paredes, P., Liu, Y., Chi, W. W., & Pereira, L. S. 2015. Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agricultural water management, 147: 43-53.
Zhang, D., Li, N., Cao, S., Liu, X., Qiao, M., Zhang, P. ... & Huang, X. 2019. A Layered Chitosan/Graphene Oxide Sponge as Reusable Adsorbent for Removal of Heavy Metal Ions. Chemical Research in Chinese Universities, 35(3): 463-470.