Experimental Investigation of the Suspended Sediment Effect on the Contamination Transport and Comparison with the Temporal Moment Analysis and OTIS-P software

Document Type : Original Article

Authors

1 Water engineering department, Faculty of agricultural engineering, Sari agricultural sciences and natural resources university.

2 Department of water engineering, Sari agricultural sciences and natural resources university.

3 Water Engineering Dep, Gorgan University of Agricultural Sciences and Natural Resources

4 water engineering department- Faculty of agricultural engineering- Sari Agricultural Sciences and Natural Resources University-IRAN

Abstract

Environmental quality and health safety assessment often require prediction of solute transport in rivers. The process of moving suspended sediment in rivers acts like contamination. In this study, the transient storage model (TSM) was used to simulate the contamination transport in dense flow conditions (with suspended sediments). OTIS-P numerical model and Temporal Moment analysis (TM) were used to solve the transient storage model (TSM) and the breakthrough curves (BTCs) were simulated. Grain material with an average diameter (D50) of 11.85 mm and the porosity (n) of 0.28 were used to create a sedimentary bed. Experiments of tracer material (NaCl) were performed in a flume with a length of 12 m, a width of 0.5 m and a height of 0.7 m applying three different flow discharges (10, 12.5 and 15 l/s). In order to create dense flow conditions, suspended sediments with initial concentrations of 187500 ppm (SC1) and 375000 ppm (SC2) were injected. Experimental results showed that the existence of suspended sediment in the stream (dense flow conditions) increased the medium residence time (MRT) of contamination in the main stream. The results of numerical solution showed that storage zone exchange coefficient (α) in dense flow conditions was 1 to 3.2 times the storage zone exchange coefficient (α) compared to clear flow conditions. The results of numerical solution showed that the longitudinal dispersion coefficient (Dx) in dense flow conditions was 2 to 7 times the longitudinal dispersion coefficient (Dx) compared to clear flow conditions. The BTCs simulated by the OTIS-P numerical model and the temporal moment analysis (TM) were highly agreement with the laboratory BTCs with the Nash-Sutcliffe index between 0.89 to 0.97 and 0.89 to 0.95.In natural rivers with high concentrations of suspended sediment, hyporheic exchanges have an important role in the transport of contamination. Therefore, the use the transient storage model (TSM) is recommended instead of the analytical solution of the advection-dispersion equation (ADE).

Keywords

Main Subjects


آژدان، ی. 1397. بررسی آزمایشگاهی معادلات جابجایی-پراکندگی در انتقال آلودگی در رودخانه­های با بستر سنگریزه­ای. رساله دکتری در رشته سازه­های آبی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، 265 صفحه. 
آژدان، ی.، ع. عمادی، ج. چابک­پور، و ر. دانش­فراز. 1398. برآورد پارامترهای مدل ذخیره موقت برای شبیه­سازی انتقال آلودگی در رودخانه­های بستر سنگریزه­ای. مجله تحقیقات آب و خاک ایران، دوره 50، شماره 1، ص 66-77. 
براتی­مقدم، م.، م. مظاهری و ج. محمد­ولی­سامانی. 1394. مدل یک­بعدی انتقال آلاینده در رودخانه­های طبیعی با تأکید بر نقش نواحی نگهداشت. مجله مدیریت آب و آبیاری، دوره 5، شماره 2، ص 169-190. 
چابک­پور، ج.، ا. امیری­تلکدانی  و م. صدقی­اصل. 1395. برآورد ضریب انتشار طولی رسوبات معلق درون محیط­های متخلخل درشت­دانه. نشریه پژوهش­های حفاظت آب و خاک، دوره 23، شماره 6، ص 317-332.
شفاعی­بجستان، م. 1390. مبانی نظری و عملی هیدرولیک انتقال رسوب. انتشارات دانشگاه شهید چمران اهواز.
محمودیان شوشتری، م. 1387. اصول جریان در مجاری روباز (جلد دوم). انتشارات دانشگاه شهید چمران اهواز.
میرناصری، م.، ع.ر. عمادی، ع.ر. ظهیری و م.ع.، غلامی سفیدکوهی. 1400. بررسی آزمایشگاهی و عددی تاثیر نواحی فرم بستر خیزاب-چالاب بر جابجایی آلودگی در رودخانه های با بستر شنی. تحقیقات آب و خاک ایران، دوره 52، شماره 4، ص 1-17.
Bencala, K.E. and R.A. Walters. 1983. Simulation  of  solute  transport  in  a mountain  pool-and  riffle stream:  a  transient  storage  model. Water Resources Research, 19(3):718–724.
Chanson, H. 2004.  Environmental hydraulics of open channel flows.  Elsevier Butterworth-Heinemann Linacre House, Jordan Hill, Oxford.
Fernald, A.G., Wigington, P. and Landers, D.H. (2001). Transient storage and hyporheic flow along the Willamette River, Oregon: field measurements and model estimates. Water Resources Research, 37(6), 1681-1694.
Gonzales-Pinzon, R., R. Haggerty and M. Dentz. 2013. Scaling and predicting solute transport processes in streams. Water Resources Research, 49(7): 4071-4088.
Jin, L., D.I. Siegel, L.K. Lautz, M.H. Otz, (2009). Transient storage and downstream solute transport in nested stream reaches affected by beaver dams. Hydrological Processes, 23(17), 2438–2449.
Knapp, J.L.A., and C. Kelleher. 2020. A perspective on the future of transient storage modeling: Let's stop chasing our tails. Water Resources Research, 56, e2019WR026257.
Madadi, M.R., S. Akbarifard and K. Qaderi. 2020. Improved Moth-Swarm Algorith m to predict transient storage model parameters in natural streams. Environmental Pollution, 262(114258): 1-9.
Marion, A., M. Zaramella and A. Bottacin-Bosolin. 2008. Solute transport in rivers with multiple storage zones: The STIR model. Water Resources Research, 44(10): 1-10.
Noh, H., S. Kwon, W. Seo, D. Beak and S.H. Jung. (2021). Multi-Gene Genetic Programming Regression Model for Prediction of Transient Storage Model Parameters in Natural Rivers. Journal of Water, 13(1), 1-29.
Rana, S.M.M., D.T. Scott and E.T. Hester. 2017. Effects of in-stream structures and channel flow rate variation on transient storage. Journal of Hydrology, 548: 157-169.
Runkel, R.L. 1998. One- dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers.  U.S.  Geological Survey, Water-Resources investigations, Report 98-4018. 73 p, Denver, Colorado.
Seo, I.W. and T.S. Cheong. 2001. Moment-based calculation of parameters for the storage zone model for river dispersion. Journal of Hydraulic Engineering, 127(6): 453-465.
Sokac, M. 2017. Determination of the longitudinal dispersion coefficient in lowland streams with occurrence of dead zones. Environmental Engineering 10th International Conference, Vilnius Gediminas Technical University Lithuania. 27-28 April.
Zaramella, M., A. Marion, J. Lewandowski, G. Nutzmann. (2016). Assessment of transient storage exchange advection-dispersion mechanisms from concentration signatures along breakthrough curves. Journal of Hydrology, 538, 794-8.