The Entropy Analysis of Groundwater Level Time Series in Ardabil Plain

Document Type : Original Article

Author

1- Department of Civil Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran.

Abstract

The hydrological and geomorphological changes in catchments is one of the most important challenges today. Analysis of hydrological time series such as groundwater level plays an important role in the behavior identification of them against various factors. In this study, the effect of wavelet based de-noising on the entropy of groundwater level time series in Ardabil plain has been investigated. Also, the effective sub-series of the groundwater level time series process were identified using three criteria: entropy, mutual information (MI) and linear correlation coefficient. The results showed that the entropy of the groundwater level time series increased using wavelet based de-noising method. The increase of entropy indicates an increase natural fluctuations in the groundwater level time series and thus indicates the occurrence of a favorable trend in it. Also, the results showed that MI and entropy criteria, due to nonlinear nature, can accurately demonstrate the dominant sub-series in the groundwater level process. A+D3 combination was considered as the dominant sub-series in most piezometers.

Keywords

Main Subjects


دانشور وثوقی، ف.، شاکر، ر. 1397. بررسی روند تغییرات تراز آب زیرزمینی با روش ترکیبی من­کندال- تبدیل موجک (مطالعه موردی -دشت اردبیل)، دوره 4، شماره 3، ص 253-243.
کماسی، م.، شرقی، س. نورانی، و. 1395. شناسایی عوامل مؤثر بر کاهش تراز آب زیرزمینی با بهره­گیری از معیار موجک–آنتروپی (مطالعه­ موردی: آبخوان دشت سیلاخور)، دوره 3، شماره 9، ص 86-63.
نورانی، و.، رنجبر، س.، توتونچیان، ف. 1394. بررسی تغییرات فرآیندهای هیدرولوژیکی با استفاده از معیاره موجک-آنتروپی (مطالعه موردی: دریاچه ارومیه)، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، سال 45 شماره 80، ص 86-75.
Amorocho, J. and Espildora, B. 1973. Entropy in the assessment of uncertainty in hydrologic systems and models, Water Resources Research. 9: 1522–1551.
Caselton, W. F. and Husain, T. 1980. Hydrological networks: Information transmission, Journal of Water Resources Planning & Management. 106: 503-520.
Chou, M. 2014. Complexity Analysis of Rainfall and Runoff Time Series Based on Sample Entropy in Different Temporal Scales, Stochastic Environmental Research and Risk Assessment, 28: 1401-1408.
Costa, M., Goldberger, A. L., Peng, C. K. 2002. Multiscale Entropy Analysis of Complex Physiologic Time Series, Physical Review Letters. 89 (6): 068102.
Donoho, D.H. 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory. 41(3): 613–617.  
Kagan, A. M., Linnik, Yu. V. and Rao, C. R. 1973. Characterization Problems in Mathematical Statistics, Wiley, New York. 408–410.
Krstanovic, P. F. and Singh, V. P. 1992. Evaluation of rainfall networks using entropy I: Theoretical development, Water Resources Management. 6: 279–293.
Li, Z., Zhang, Y. K. 2008. Multi-Scale Entropy Analysis of Mississippi River Flow, Stochastic Environmental Research and Risk Assessment. 22: 507-512.
Maruyama, T., Kawachi, T. and Singh, V.P. 2005. Entropy-based assessment and clustering of potential water resource availability. Journal of hydrology. 309:104-113.
Nourani, V., Nezamdoost, N., Samadi, M., Daneshvar Vousoughi, F. 2015. Wavelet-based trend analysis of hydrological processes at different timescales. Journal of Water Climate Change. 6(3): 414–435.
Pincus, S. M. 1991. Approximate Entropy as a Measure of System Complexity, Proceedings of the National Academy of Sciences of the United States of America. 15: 2297- 2301.
Shannon, C.E. 1948. A Mathematical Theory of Communications I and II. Bell, System Technical Journal. 3: 379-443.
Singh, V. P. 2011. Hydrologic synthesis using entropy theory: Review, Journal of Hydrologic Engineering. 16: 421-433.
Sonuga, J. O. 1972. Principle of maximum entropy in hydrologic frequency analysis. Journal of Hydrology. 17: 177–219.
Yang, H. H., Vuuren, S. V., Sharma, S. and Hermansky H. 2000. Relevance of time-frequency features for phonetic and speaker-channel classification. Speech Communication. 31: 35-50.