Estimation of the Type 6 Muskingum Nonlinear Model Parameters in the Flood Routing with The Mayfly Algorithm (MA)

Document Type : Original Article

Authors

1 PhD Student, Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 , Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

3 Water Engineering Department, Ferdowsi University of Mashhad

4 Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad.

10.22125/iwe.2023.173242

Abstract

One of the basic topics in hydrological and river engineering studies is flood routing.Flood flooding is common in multi-tributary rivers and rivers without intermediate basin statistics. Therefore, to achieve the determination of slopes and cross-sections in all sections of the river, the Muskingum hydrological model is a useful method that helps to save information on the depth and flow of the flood at any time by saving time and money. To specify. In this study, the nonlinear parameters of the new Muskingum model are optimized based on the fly algorithm (MA). In this non-linear model of Muskingum, which has eight parameters, the recovery coefficient γ is used, which has more or less values ​​than the number of peaks discharged in the output hydrograph.To evaluate the performance of Muskingum's new nonlinear model with the new MA algorithm, the Wilson and Weisman-Lewis case study has been used by many previous researchers for validation.The results of the MA algorithm for Wilson and Weissman-Lewis rivers show the minimization of the residual squares (SSQ) as the objective function, which is 3.21 for the Wilson River and 68722 for the Weissman River. The results of this study showed that the proposed model has high accuracy in estimating the output discharge values.
 

Keywords

Main Subjects


خلیفه، س.، ع. اسماعیلی، ک. اسماعیلی و س. خداشناس. 1399. کاربست مقایسه ای الگوریتم جستجوی موجودات همزیست با الگوریتم های فراکاوشی در مدل روندیابی سیلاب. نشریه آب و خاک فردوسی مشهد، جلد 34، شماره 2.
زینلی، م.، و م. پوررضا. 1388. تخمین پارامترهای بهینه مدل روندیابی غیرخطی ماسکینگام با استفاده از الگوریتم مورچگان پیوسته. نشریه مهندسی آبیاری و آب ایران، سال هشتم، شماره 31، ص 106-94.
محمدی قلعه نی، م.، و ا. بزرگ حداد. 1389. بهینه سازی پارامترهای مدل غیرخطی ماسکینگام با استفاده از الگوریتم بهینه سازی نورد شبیه‌سازی شده. نشریه آب و خاک فردوسی مشهد، سال 1389، شماره 5، ص 919-908.
Barati R, Badfar M, Azizyan G, Akbari GH. 2017. Discussion of parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm” by Farzan Hamedi,
 Bozorg Haddad O, Hamedi F, Orouji H, Pazoki M, Loáiciga HA. 2015. A re-parameterized and improved nonlinear muskingum model for flood routing. Water Resources Management 29(9):3419- 3440.
Cheng, M. Y. and Prayogo, D. 2014. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. J. Comput. Struct. 139, 98-112.
  Chow, V. T. 1973. Open Channel Hydraulic. 3rd Ed. McGraw Hill Book Company. New York. Inc.
Easa SM. 2013. New and improved four parameter nonlinear Muskingum model. Proceeding of the Institution of Civil Engineering-Water Management. 167(5):288–298
Ehteram, M.; Binti Othman, F.; Mundher Yaseen, Z.; Abdulmohsin Afan, H.; Falah Allawi, M.; Bt. Abdul Malek, M.; Najah Ahmed, A.; Shahid, S.; P. Singh, V.; El-Shafie, A. Improving the Muskingum Flood Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm. Water 2018, 10, 807.
Gavilan G, Houck MH. 1985. Optimal Muskingum River routing. Proceedings of ASCE WRPMD Specialty Conference on Computer Applications in Water Resources, 10-12 June, New York, Reston, VA, USA, 1294–1302.
Geem, Z. W. 2006. Parameter estimation for the nonlinear Muskingum model using the BFGS technigue. Journal of Irrigation and Drainage Engineering, 5: 474-478.
Gill, M. A. 1978. Flood routing by Muskingum method. Journal of Hydrology, 36: 353-363.
Karahan, H., G. Gurarslan., A.M. ASCE and Z.W. Geem. 2013. Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm. Journal of Hydrologic Engineering, 18: 352–360.
Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. 2019. Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872.‏
Kim J. H., Z. W. Geem and E. S. Kim. 2001. Parameter estimation of the nonlinear Muskingum model using harmony search. Journal of the American Water Resources Association, 37:1131-1138.
Khalifeh, S., Esmaili, K., Khodashenas, S., and Akbarifard, S. 2020. Data on Optimization of the Non-linear Muskingum Flood Routing in Kardeh River Using GOA Algorithm. Journal of Data in Brief, Volume 30, https://doi.org/10.1016/j.dib.2020.105398.
McCarthy, G. T. 1938. The unit hydrograph and flood routing. Proc. Conf. of North Atlantic Division, U.S. Army Corps of Engineers, Washington, DC.
Mohan, S. 1997. Parameter estimation of nonlinear Muskingum models using genetic algorithm. J. Hydraulic. Eng, 123: 137–142.
Premual, M. and K.G. RangaRaju. 1998. Variable – parameter stage – hydrograph routing method: I Theory. Journal of Hydrologic Engineering, ASCE, 3: 109-114.
Wilson, E. M. 1974. Engineering hydrology, MacMillan Education, Hampshire, United Kingdom.
Zervoudakis, K. and Tsafarakis, S., 2020. A mayfly optimization algorithm. Computers & Industrial Engineering145, p.106559.
Gao, Z.M., Zhao, J., Li, S.R. and Hu, Y.R., 2020, December. The improved mayfly optimization algorithm with Opposition based learning rules. In Journal of Physics: Conference Series (Vol. 1693, No. 1, p. 012117). IOP Publishing.