A New Approach to Propagation Time From Agricultural Drought to Hydrological Drought Across Different Climates of Iran

Document Type : Original Article

Authors

1 Assistant Professor, Department of Environment Science and Engineering, Arak University, Arak, Iran

2 Department of Environmental Science and Engineering, University of Arak, Arak, Iran

Abstract

Droughts are natural events that cause irreparable impacts on agriculture and the environment, but also threaten human health. This event has always been associated with long periods of time in Iran. Therefore, the country is prone to drought and often suffers from dry conditions. To quantify and describe drought conditions, two drought indices, the Standardized Precipitation Index (SPI) and Standardized Potential Evapotranspiration Index (SPEI) were used in this study in 2, 6, 24, and 48 month time scales. The time scales of 2, 6, 24, and 48 months are related to agricultural and hydrological drought, respectively. Using quantification and the difference between SPI and SPEI, drought events were identified. Both indices show that 1999, 2000, and 2009 were very dry years. Drought events identified by the SPEI index are further classified into moderate and severe categories, which are characterized by longer duration and greater magnitude. In contrast, the drought events identified by SPI were mostly classified in the very intensity category, which was associated with limited duration and lower intensity, but with higher intensities. This study showed that SPEI differs from SPI in quantifying and characterizing drought, and the use of SPEI and SPI can be generalized to the different climates across the country when assessing drought. This study will be able to predict and reduce possible drought impacts, especially for agricultural purposes. the use of the temporal shift over the correlation analysis provides the estimation of drought propagation time that may prove useful for detailed analyses, .

Keywords

Main Subjects


شرفی، س. و محمدی قلعه‌نی، م. 1401. تأثیر خشکسالی بر عملکرد گندم و جو دیم در اقلیم‌های مختلف ایران. مجله آبیاری و زهکشی ایران، 5(16): 1025-1010.
شرفی، س.، صادقی، س.، نحوی‌نیا، م.ج. عبدالهی‌پور، م. 1401. ارزیابی معادلات رگرسیونی چند متغیره در تخمین عملکرد گندم و جو دیم در اقلیم‌های مختلف ایران. مدیریت آب و آبیاری، 12(1): 211-201.
محمدی قلعه‌نی، م. و شرفی، س. 1401.  ارزیابی دقت پایگاه داده های CRU TS4.05 و ERA5 برای متغیرهای بارش، دما و تبخیرتعرق پتانسیل در اقلیم‌های مختلف ایران. مجله آبیاری و زهکشی ایران، 5(16): 890-879.
Andreadis, K.M., Clark, E.A., Wood, A.W., Hamlet, A.F. and Lettenmaier, D.P. 2005. Twentieth-century drought in the conterminous United States. Journal of Hydrometeorology, 6(6):985-1001.
Beguería, S., Vicente‐Serrano, S. M., Reig, F. and Latorre, B. 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International journal of climatology, 34(10): 3001-3023.‏
Chen, T., Xia, G., Liu, T., Chen, W. and Chi, D. 2016. Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Liaoning Province, China. Sustainability, 8(10): 1069.‏
Fluixá-Sanmartín, J., Pan, D., Fischer, L., Orlowsky, B., García-Hernández, J., Jordan, F. et al. 2018. Searching for the optimal drought index and timescale combination to detect drought: a case study from the lower Jinsha River basin, China. Hydrology and Earth System Sciences, 22(1): 889-910.‏
Han, X., Li, Y., Yu, W. and Feng, L. 2022. Attribution of the Extreme Drought in the Horn of Africa during Short-Rains of 2016 and Long-Rains of 2017. Water, 14(3): 409.
Hao, Z. and AghaKouchak, A. 2013. Multivariate standardized drought index: a parametric multi-index model. Advances in Water Resources, 57: 12-18.
‏Hao, Y., Baik, J., Fred, S. and Choi, M. 2022. Comparative analysis of two drought indices in the calculation of drought recovery time and implications on drought assessment: East Africa's Lake Victoria Basin. Stochastic Environmental Research and Risk Assessment, 36(7): 1943-1958.‏
Hao, Z. and Singh, V.P. 2015. Drought characterization from a multivariate perspective: A review. Journal of Hydrology, 527: 668-678.
Ho, S., Tian, L., Disse, M. and Tuo, Y. 2021. A new approach to quantify propagation time from meteorological to hydrological drought. Journal of Hydrology, 603: 127056.‏
Jia, J. Y., Han, L. Y., Liu, Y. F., He, N., Zhang, Q., Wan, X. and Hu, J. M. 2016. Drought risk analysis of maize under climate change based on natural disaster system theory in Southwest China. Acta Ecologica Sinica, 36(5): 340-349.‏
Kim, J. B., Habimana, J. D. D., Kim, S. H. and Bae, D. H. 2021. Assessment of Climate Change Impacts on the Hydroclimatic Response in Burundi Based on CMIP6 ESMs. Sustainability, 13(21); 12037.‏
Kim, D., Lee, W.S., Kim, S.T. and Chun, J.A. 2019. Historical drought assessment over the contiguous United States using the generalized complementary principle of evapotranspiration. Water Resources Research, 55(7): 6244-6267.
Kalisa, W., Zhang, J., Igbawua, T., Kayiranga, A., Ujoh, F., Aondoakaa, I. S. et al. 2021. Spatial Multi-Criterion Decision Making (SMDM) Drought Assessment and Sustainability over East Africa from 1982 to 2015. Remote Sensing, 13(24): 5067.‏
Li, Z., Chen, Y., Fang, G. and Li, Y. 2017. Multivariate assessment and attribution of droughts in Central Asia. Scientific Reports, 7(1): 1-12.
Li, J., Wang, Z., Wu, X., Chen, J., Guo, S. and Zhang, Z. 2020. A new framework for tracking flash drought events in space and time. Catena, 194:104763.
Liu, C., Yang, C., Yang, Q. and Wang, J. 2021. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Scientific Reports, 11(1): 1-14.‏
Lloyd‐Hughes, B. 2012. A spatio‐temporal structure‐based approach to drought characterisation. International Journal of Climatology, 32(3):406-418.
Lloyd-Hughes, B. 2014. The impracticality of a universal drought definition. Theoretical and Applied Climatology, 117(3): 607-611.‏
Marengo, J. A., Cunha, A. P., Cuartas, L. A., Deusdará Leal, K. R., Broedel, E., Seluchi, M. E. et al. 2021. Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Frontiers in Water, 3: 639204.‏
McKee, T. B., Doesken, N. J. and Kleist, J. 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22): 179-183.‏
Mishra, A.K. and Singh, V.P. 2010. A review of drought concepts. Journal of Hydrology, 391(1–2): 202–216.
Ndayiragije, J. M. and Li, F. 2022. Monitoring and analysis of drought characteristics based on climate change in Burundi using standardized precipitation evapotranspiration index. Water, 14(16): 2511.‏
Nguvava, M., Abiodun, B. J. and Otieno, F. 2019. Projecting drought characteristics over East African basins at specific global warming levels. Atmospheric Research, 228: 41-54.‏
Nkunzimana, A., Shuoben, B., Guojie, W., Alriah, M. A. A., Sarfo, I., Zhihui, X. et al. 2021. Assessment of drought events, their trend and teleconnection factors over Burundi, East Africa. Theoretical and Applied Climatology, 145(3): 1293-1316.‏
Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain, C. and Basara, J. B. 2018. Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bulletin of the American Meteorological Society, 99(5): 911-919.‏
Pendergrass, A.G., Meehl, G.A., Pulwarty, R., Hobbins, M., Hoell, A., AghaKouchak, A., Bonfils, C.J., Gallant, A.J., Hoerling, M., Hoffmann, D. and Kaatz, L., 2020. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nature Climate Change, 10(3): 191-199.
Potopová, V., Štěpánek, P., Možný, M., Türkott, L. and Soukup, J. 2015. Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agricultural and Forest Meteorology, 202: 26-38.‏
Rehana, S. and Naidu, G. S. 2021. Development of hydro-meteorological drought index under climate change–Semi-arid river basin of Peninsular India. Journal of Hydrology, 594: 125973.‏
Samantaray, A. K., Ramadas, M. and Panda, R. K. 2022. Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble. Agricultural Water Management, 266: 107568.‏
Scott, R. L., Knowles, J. F., Nelson, J. A., Gentine, P., Li, X., Barron-Gafford, G. 2021. Water availability impacts on evapotranspiration partitioning. Agricultural and Forest Meteorology, 297: 108251.‏
Sharafi, S., Ghaleni, M. M. and Sadeghi, S. 2022. Spatial and temporal analysis of drought in various climates across Iran using the Standardized Precipitation Index (SPI). Arabian Journal of Geosciences, 15(14): 1-14.‏
Sharafi, S. and Mir Karim, N. 2020. Investigating trend changes of annual mean temperature and precipitation in Iran. Arabian Journal of Geosciences, 13(16): 1-11.‏
Sharafi, S. and Mohammadi Ghaleni, M. 2021. Calibration of empirical equations for estimating reference evapotranspiration in different climates of Iran. Theoretical and Applied Climatology, 145(3): 925-939.‏
Sharafi, S. and Mohammadi Ghaleni, M. 2022. Spatial assessment of drought features over different climates and seasons across Iran. Theoretical and Applied Climatology, 147(3–4): 941–957.
Sharafi, S., Ramroudi, M., Nassiri, M., Galavi, M. and Kamali. G. 2016. Role of early warning systems for sustainable agriculture in Iran. Arabian Journal of Geosciences, 9(734): 1-17.
Sheffield, J., Andreadis, K.M., Wood, E.F. and Lettenmaier, D.P. 2009. Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. Journal of Climate, 22(8):1962-1981.
Sheffield, J., Wood, E. F. and Roderick, M. 2012. Little change in global drought over the past 60 years Nature.‏
Shiru, M. S., Shahid, S., Alias, N. and Chung, E. S. 2018. Trend analysis of droughts during crop growing seasons of Nigeria. Sustainability, 10(3): 871.‏
Shukla, S. and Wood, A.W. 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical research letters, 35(2): 1-7.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P. and Dosio, A. 2018. Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38(4): 1718–1736.
Tabari, H., Nikbakht, J. and Talaee, P. H. 2013. Hydrological drought assessment in Northwestern Iran based on streamflow drought index (SDI). Water resources management, 27(1): 137-151.‏
Tadese, M., Kumar, L. and Koech, R. 2020. Long-term variability in potential evapotranspiration, water availability and drought under climate change scenarios in the Awash River Basin, Ethiopia. Atmosphere, 11(9): 883.‏
Taji, S. G. and Keskar, A. P. 2022. Drought identification and analysis of precipitation trends in Beed District, Maharashtra. Materials Today: Proceedings, 61: 332-341.‏
Tijdeman, E. and Menzel, L. 2021. The development and persistence of soil moisture stress during drought across southwestern Germany. Hydrology and Earth System Sciences, 25(4): 2009-2025.‏
Tirivarombo, S., Osupile, D. and Eliasson, P. 2018. Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Physics and Chemistry of the Earth, Parts A/B/C, 106: 1-10.‏
Tosunoğlu, F. and Onof, C. 2017. Joint modelling of drought characteristics derived from historical and synthetic rainfalls: Application of Generalized Linear Models and Copulas. Journal of Hydrology: Regional Studies, 14: 167-181.‏
Van Loon, A. F. 2015. Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4): 359-392.
Van Loon, A. F., Van Huijgevoort, M. H. J. and Van Lanen, H. A. J. 2012. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models. Hydrology and Earth System Sciences, 16(11): 4057-4078.‏ ‏
Vélez-Nicolás, M., García-López, S., Ruiz-Ortiz, V., Zazo, S. and Molina, J. L. 2022. Precipitation Variability and Drought Assessment Using the SPI: Application to Long-Term Series in the Strait of Gibraltar Area. Water, 14(6): 884.‏
Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7): 1696-1718.‏
Vicente-Serrano, S. M., Camarero, J. J., Olano, J. M., Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera, M., Gazol, A., Azorin-Molina, C., Bhuyan, U. and El Kenawy, A. 2016. Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment, 187: 14–29.
Vicente-Serrano, S.M., Miralles, D.G., Domínguez-Castro, F., Azorin-Molina, C., El Kenawy, A., McVicar, T.R., Tomás-Burguera, M., Beguería, S., Maneta, M. and Peña-Gallardo, M. 2018. Global assessment of the standardized evapotranspiration deficit index (SEDI) for drought analysis and monitoring. Journal of Climate, 31(14): 5371-5393.
Wang, W., Ertsen, M.W., Svoboda, M.D. and Hafeez, M. 2016. Propagation of drought: from meteorological drought to agricultural and hydrological drought. Advances in Meteorology, 2016.
Yahya, M. D., Yohanna, I., Auta, M. and Obayomi, K. S. 2020. Remediation of Pb (II) ions from Kagara gold mining effluent using cotton hull adsorbent. Scientific African, 8: e00399.‏
Yevjevich, V.M. 1967. Objective approach to definitions and investigations of continental hydrologic droughts, An (Doctoral dissertation, Colorado State University. Libraries).
Yusa, A., Berry, P., Cheng, J. J., Ogden, N., Bonsal, B., Stewart, R. and Waldick, R. 2015. Climate change, drought and human health in Canada. International journal of environmental research and public health, 12(7): 8359-8412.‏
Zhu, Y., Wang, W., Singh, V. P. and Liu, Y. 2016. Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection. Science of the Total Environment, 571: 1058-1068.‏