Improvement of SINTACS Method Using Analytical Hierarchy Process in Geographic Information System Environment to Evaluate Aquifer Vulnerability (Case Study: Andimeshk Plain)

Document Type : Original Article

Authors

1 MSc in Environmental Engineering, Shahid Chamran University of Ahwaz

2 Asistant Prof, Dep. of Hydrology and Water Resources, Shahid Chamran University of Ahvaz, Iran.

Abstract

Population growth, industrialization and the development of agricultural activities are the causes of increasing municipal and industrial wastewaters and irregular use of fertilizers and pesticides, and consequently the contamination of groundwater resources. Since the main problem with SINTACS models, applies expertise rating parameters to be used in it, in this study, the model using Analytical Hierarchy Process based on local hydrogeological conditions were indeed improvement. To achieve efficient models, the correlation coefficients between nitrate concentrations in the aquifer vulnerability index as an indicator of contamination were determined using Simple Linear Regression Analysis (SLRA). The results showed that the optimal model SINTACS than model the normal SINTACS is correlated with higher nitrate concentrations. Also, in order to assess risk Andimeshk aquifer pollution, land use parameters with the parameters used in the SINTACS model are overlaid, thus in turn specific aquifer vulnerability map was provided. Results from the map showed that the risk of aquifer contamination is not high.

Keywords


اهدایی، ب. 1368. آمار تجربی عمومی، مرکز انتشارات دانشگاه شهید چمران اهواز، چاپ دوم، صص 467.
شرکت مهندسین مشاور بهکار آب اهواز. 1390. مطالعات هیدروژئولوژی نیمه تفصیلی دشت دزفول- اندیمشک. سازمان آب و برق خوزستان.
عطائی، م. 1389. تصمیم­گیری چند معیاره، انتشارات دانشگاه صنعتی شاهرود، چاپ اول، صص 333.
میرزائی، س.، م، نادری، ح. بیگی و ج. محمدی. 1388. ارزیابی آسیب­پذیری آبخوان دشت شهرکرد با استفاده از GIS و مدل SINTACS. سومین همایش و نمایشگاه تخصصی مهندسی محیط­زیست، تهران، مهرماه 1388.
Al Kuisi, M., A. El-Neqa and N. Hammouri. 2006. Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Valley area, Jordan. J. Environmental Geology, 50 (5): 651-667.
Babiker, I. S., M. A. A. Mohamed,  T. Hiyama and K. Kikuo. 2005. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. J. Science of the Total Environment, 345(1-3): 127-140.
Bai, L., Y. Wang and F. Meng. 2011. Application of DRASTIC and Extension theory in the groundwater vulnerability evaluation. Water and Environment Journal, 26(3), pp. 381-391.
Bonham-carter, G. F. 1994. Geographic Information System for Geoscientists: Modeling with GIS, Pergamon, Ontario.
Civita, M. 1993. Groundwater vulnerability maps: a review. Proceedings of the IX symposium on pesticide chemistry “mobility and degradation of xenobiotics”, Piacenza,  587-631.
Civita, M. 1990. Legenda unificata per le Carte della vulnerabilita dei corpi idrici sotterranei/ Unified legend for the aquifer pollution vulnerability Maps. Studi sulla Vulnerabilita degli Acquiferi, Pitagora Edit, Bologna.
Civita, M. 1994. Le carte della vulnerability degli acquifer all’ inquinamento. Teoria and practica (Aquifer vulnerability maps to pollution) Pitagora, Bologna.
Civita, M. and M. De Maio. 1997. SINTACS. Un sistema parametrico per la valutazione e la cartografia della Vulnerabilita degli acquiferi all’inquinamento, Metodologia and Automatizzazione, Vol. 60, Pitagora Editrice, Bologna.
Corniello, F., D. Ducci and G. Monti. M. 2004. Aquifer pollution vulnerability in the Sorrento peninsila, southern Italy, evaluated by SINTACS method. J. Geofisica International, 43(4): 575-581.
Gemitzi, A., C. Petalas, C. Tsihrintzis and  V. Pisinaras. 2006. Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environmental Geology, 49(5): 653-673.
Hasiniaina, F., J. Zhou and L. Guoyi. 2010. Regional assessment of groundwater vulnerability in Tamtsag basin, Mongolia using drastic model. Journal of American Science, 6(11): 65-78.
Khodapanah, L., W. N. A. Sulaiman and N. Khodapanah. 2009. Groundwater quality assessment for different purpose in Eshtehard District, Tehran, Iran. J. European Journal of Scientific Research, 36(4): 543-553.
Lodwick, WA., W. N. A. Munson and L. Svoboda. 1990. Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. International Journal of Geographic Information Systems, 4(4): 413-428.
Martinez-Bastida, J. J., M. Arauzo and M. Valladolid. 2010. Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution. Hydrogeology Journal, 18(3): 681-698.
Piscopo, G. 2001. Groundwater vulnerability map, explanatory notes, Castlereagh Catchment, NSW. Departmant of Land and Water Conservation, Australia. ” <http://www.dlwc.nsw.gov.au./care/water/groundwater/reports/pdfs/castlereagh_map_notes.pdfs.>
Rahman, A. 2008. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. J. Applied Geography, 28(1): 32-53.
Samey, A. A. and C. Gang. 2008. A GIS Based DRASTIC Model for the Assessment of Groundwater Vulnerability to Pollution in West Mitidja: Blida City, Algeria. Research Journal of Applied Sciences, 3(7): 500-507.
Sener, E. and A. Davraz. 2012. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal, DOI 10.1007/s10040-021-0947-y.
Thirumalaivasan, D., M. Karmegam and K. Venugopal. 2003. AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. J. Environmental Modeling & Software, 18: 645-656.