Empirical and intelligence Models Evaluation in Estimation of Reference Evapotranspiration by Minimum Climate Data; case study shahrekord

Document Type : Original Article

Authors

1 MSc. Student, Department of Water Engineering, Faculty of Agriculture, Arak University

2 Assistant Professor ,Department of Water Engineering, Faculty of Agriculture, Arak University

3 Assistant Professor ,Department of Animal Science, Faculty of Agriculture, Arak University

Abstract

 
Abstract
The water resources are severely affected by hydrological cycle.Estimation of evapotranspiration which is the main component of the hydrological cycle plays an important role in water resources management. This phenomenon is non-linear and many factors affect on that and its estimation is very difficult. Various methods have been employed to estimate evapotranspiration although they have some limitations or problems. Some of these methods are costly and time-consuming such as lysimeters, and other empirical methods have local authority. Accordingly, applying a method that can be able to model the evapotranspiration regard to the nature of the gathered data and usage of minimum climate parameters is necessary. Nowadays, Artificial Neural Network (ANN) as a novel intelligent method are used in various sciences. In this study, the daily data of two climatological stations, namely Farokhshahr and Shahrekord airport in the interval of 2004-2013 including minimum temperature, maximum temperature, average relative humidity, sunshine, and wind speed at the height of two meters under different scenarios were utilized. Initially, empirical methods of reference evapotranspiration were approximated.The used empirical methods in this research have been Hargreaves, Blany Criddle, Priestley Taylor, and Jensen Hayes. The ANN model has been designed based on different scenarios of input data through MATLAB (R2012 b) Software. In this step, different ANN architectures were evaluated based on sensitivity and accuracy So, threshold functions such as tangent sigmoid and log sigmoid in hidden layers, linear function output layer were tested in topology where as Levenberg Marquardt employed as learning function.To evaluate the models, Penman Monteis FAO 56 model was employed.The statistical indexes, namely RMSE, MAE and R were calculated. Ten scenarios have been examined, and the results demonstrated that  Scenario one with five parameters had the lowest error in comparision to FAO 56 technique. Furthermore, the perposed model show superior performance than empirical methods. However, between the empirical methods, Priestley Taylor and Hargreaves had better performance. On the other hand, the sensitivity analysis illustrated that the maximum temperature and wind speed had the greatest influence on reference evapotranspiration in these regions.

Keywords


منابع
احمدزاده قره گویز، م. میرلطیفی، ک. محمدی. 1389. مقایسه­ی سیستم­های هوش مصنوعی (ANN وANFIS  ) در تخمین میزان تبخیر- تعرق مرجع در مناطق بسیار خشک ایران، نشریه آب وخاک. جلد 24. شماره­ی 4. ص 689-679.
دهقانی، ا. ا.، م. پیری، م. حسام، ن. دهقانی. 1389. تخمین تبخیر روزانه از تشت تبخیر با استفاده از سه شبکه عصبی پرسپترون چندلایه، تابع پایه شعاعی و المانی. مجله پژوهش­های حفاظت آب و خاک، جلد 17، شماره 2، ص67-49.
سلطانی، ا.، م. میرلطیفی، ح. دهقانی سانیج. 1391. برآورد تبخیر و تعرق با استفاده از داده­های محدود هواشناسی در شرایط اقلیمی مختلف. نشریه آب و خاک. جلد 26، شماره 1. ص 139- 149.
شایان نژاد، م. 1385. مقایسه دقت روشهای شبکه­های عصبی مصنوعی و پنمن-مانتیس در محاسبه تبخیر و تعرق پتانسیل. همایش ملی مدیریت شبکه­های آبیاری و زهکشی. دانشگاه شهید چمران اهواز.
شایان نژاد، م.، ح. ساداتی نژاد. 1387. تخمین تبخیر و تعرق پتانسیل روزانه گیاه مرجع چمن با استفاده از شبکه عصبی مصنوعی. مجله­ی علمی پژوهشی مرتع، سال 2، شماره­ی 2. ص 194- 182.
صیادی، ح.، ا. اولاد غفاری، ا. فعالیان، ع. صدرالدینی. 1388. مقایسه­ی برآورد شبکه های MLP و RBF در برآورد تبخیر و تعرق مرجع. مجله­ی دانش آب و خاک. جلد 19، شماره­ی 1. ص 12- 1.
علیزاده، ا. 1383. رابطه­ی آب و خاک وگیاه. مشهد، دانشگاه امام رضا. ویرایش3.
منهاج، م. ب. 1381. مبانی شبکه­های عصبی و هوش محاسباتی، جلد اول، انتشارات دانشگاه صنعتی امیر کبیر، تهران.
نوری، س.، غ. فلاحقالهری،  ح. ثنایی نژاد. 1392. مدل سازی تبخیر- تعرق گیاه پتانسیل با استفاده از شبکه عصبی مصنوعی با حداقل متغیرهای اقلیمی در ایستگاه سینوپتیک مشهد. نشریه پژوهش­های حفاظت آب و خاک، جلد 20، شماره 5. ص 178-163.
هژبر، ح.، ه. معاضد،  س. شکری کوچک. 1393. برآورد تبخیر و تعرق مرجع با استفاده از مدل­های تجربی ،مدلسازی آن با شبکه عصبی مصنوعی و مقایسه با داده­های لایسیمتری در ایستگاه کهریزک ارومیه. فصلنامه علمی و پژوهشی مهندسی آبیاری و آب. سال 4. شماره­ی 16. ص 13-25.
Allen, R. G., L. S. Pereira, D. Raes and M. Smith. 1998. Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56.
Benediktsson, J. A., P. H., Swain and O. K. Erosy. 1990. Neural network approaches versus statistical methods in classification of multisource remote Sensing data. IEEE Transaction on Geosciences and Remote Sensing, 28(4): 540-551.
Chow, V. T., D. R., Maidment, and L.W., Mays, 1988. Applied Hydrology, illustrate. ed.Mcgraw-Hill Higher Education, New York, NY.
Civco, D. L., and Y. Wanug. 1994. Classification of multispectral, multitemporal, multisource Spatial data using artificial neural networks, Congress on Surveying and Mapping. USA.
Falamarzi,Y. N. palizdan, Y. feng Hung and T. shui lee. 2014. Estimating evapotranspiration from temperature and wind speeddata using artificial and wavelet neural networks (WNNs). Agricultural Water Management 140 : 26–36
Hargreaves, G. H. and Z. A., Samani. 1985. Reference crop evapotranspiration from temperature. Transaction of ASAE 1(2):96-99.
Huo Z . S .  Feng Kang and X . Dai.  2012. Artificial neural network models for reference evapotranspiration in an arid area of northwest China. Journal of Arid Environments 82 : 81-90.
Jain S. K, P. C, Nayak, K. P, Sudhir. 2008. Models for estimating  evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol Process 22(13):2225–2234
Kisi, O. 2008. River flow forecasting and estimation using different artificial neural network techniques, Hydrol. Res. 39: 1. 27-40.
Kumar, M., A., Bandyopadhyay, N. S.,Raghuwanshi, R., Singh. 2008. Comparativestudy of conventional and artificial neural network-based ETo estimation mod-els. Irrig. Sci. 26, 531–545.
Kumar,M., N. S. , Raghuwanshi, R, Singh. 2011. Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29:11–25.
Ladlani, I., L., Houichi, L., Djemili, S., Heddam and K., Belouz, 2012. Modeling dailyreference evapotranspiration (ET0) in the north of Algeria using generalizedregression neural networks (GRNN) and radial basis function neural networks(RBFNN): a comparative study. Meteorol. Atmos. Phys. 118, 163–178.
Priestley, C. H. B. and R. J. Taylor. 1972. On the assessment of surface heat and evaporation using large-scale parameters, Monthly Weather Review, 100: 81-92.
Penman, H. L. 1948. Natural evaporation from open water, bare soil and grass. Proc.R. Soc. London, Ser. A Math. Phys. Sci. 193, 120–145.
Rahimi Khoob, A. 2008. Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment. Irrig. Sci. 27,35–39
Wang, Y. M, S. Traore, and T. Kerh. 2008. Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso. WSEAS Transactions on Computers. 7: 704-713.